Advertisement

AFM to Study Bio/Nonbio Interactions

  • Holger SchönherrEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 811)

Abstract

This chapter describes a versatile approach to immobilize proteins and other biomolecules on reactive self-assembled monolayers on gold as a means to study interactions (forces) between these biomolecules and nonbiological entities. Biomolecules are either immobilized on the surface of flat substrates or on the surface of gold-coated atomic force microscopy (AFM) probe tips. In addition to the immobilization protocols, the actual AFM experiments in liquid and the quantitative analysis of adhesive forces receive attention. With these procedures and tools at hand, a wide variety of problems in the area of bio/nonbio interactions can be addressed experimentally.

Key words

Atomic force microscopy Chemical force microscopy (CFM) Tip modification Tip-sample forces Bio/nonbio interactions Self-assembled monolayers 

Notes

Acknowledgments

The author gratefully acknowledges Dr. A.T.A. Jenkins and Prof. Dr. Q. Huang for granting their kind permission to use unpublished collaborative data in this chapter.

References

  1. 1.
    Kasemo, B. (2002) Biological surface science Surf. Sci. 500, 656–677.Google Scholar
  2. 2.
    Kumar, C. S. S. R. (Ed.) (2006) Tissue, Cell and Organ Engineering, Wiley-VCH.Google Scholar
  3. 3.
    Schena, M. (2003) Microarray Analysis, Wiley-Liss, Wiley & Sons, NJ.Google Scholar
  4. 4.
    Shankaran, D. R. and Miura, N. (2007) Trends in interfacial design for surface plasmon resonance based immunoassays J. Phys. D: Appl. Phys. 40, 7187–7200 and references herein.Google Scholar
  5. 5.
    Castner, D. G. and Ratner, B. D. (2002) Biomedical Surface Science: Foundations to Frontiers Surf. Sci. 500, 28–60.Google Scholar
  6. 6.
    Denis, F.A., Hanarp, P., Sutherland, D.S., Gold, J., Mustin, C., Rouxhet, P.G., and Dufrene, Y.F. (2002) Protein adsorption on model surfaces with controlled nanotopography and chemistry Langmuir 18, 819–828.Google Scholar
  7. 7.
    Vadillo-Rodríguez, V., Busscher, H. J., Norde, W., de Vries, J., and van der Mei, H. C. (2004) Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata J. Coll. Interf. Sci. 278, 251–254.Google Scholar
  8. 8.
    van der Mei, H. C., de Vries, J., and Busscher, H. J. (2010) Weibull analyses of bacterial interaction forces measured using AFM Coll. Surf. B: Biointerfaces, doi:10.1016/j.colsurfb.2010.03.018.Google Scholar
  9. 9.
    Hoh; J. H. and Schoenenberger, C. A. (1994) Surface-morphology and mechanical-properties of MDCK monolayers by atomic force microscopy J. Cell Sci. 107, 1105–1114.Google Scholar
  10. 10.
    Israelachvili, J. N. (1991) Intermolecular and Surface Forces, 2nd edn., Academic Press, London.Google Scholar
  11. 11.
    Israelachvili, J. (2005) Differences between non-specific and bio-specific, and between equilibrium and non-equilibrium, interactions in biological systems Quarterly Rev. Biophys. 38, 331–337.Google Scholar
  12. 12.
    Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic Force Microscope Phys. Rev. Lett. 56, 930–3.Google Scholar
  13. 13.
    Schönherr, H. and Vancso, G. J. (2010) Scanning Force Microscopy of Polymers, Springer, Vienna.Google Scholar
  14. 14.
    Colton, R. J., Engel, A., Frommer, J. E., Gaub, H. E., Gewirth, A. A., Guckenberger, R., Rabe, J., Heckl, W. M., and Parkinson, B., (1998) Procedures in Scanning Probe Microscopies, Wiley, New York.Google Scholar
  15. 15.
    Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S., and Lieber, C. M. (1994) Functional Group Imaging by Chemical Force Microscopy Science 265, 2071–4.Google Scholar
  16. 16.
    Schönherr, H. and Vancso, G. J. (2006) Chemical Force Microscopy: Nanometer Scale Surface Analysis with Chemical Sensitivity in SPM beyond imaging: Manipulation of Molecules and Nanostructures, Samori, P. (Ed.), Wiley-VCH, 275–314.Google Scholar
  17. 17.
    Lee, G. U., Kidwell, D. A., Colton, R. J. (1994) Sensing discrete streptavidion biotin interactions with atomic force microscopy Langmuir 10, 354–357.Google Scholar
  18. 18.
    Schönherr, H. (1999) From Functional Group Ensembles to Single Molecules: Scanning Force Microscopy of Supramolecular and Polymeric Systems Ph.D. thesis, University of Twente, The Netherlands.Google Scholar
  19. 19.
    Elsässer, H.P., Lehr, U., Agricola, B., Kern, H.F. (1992) Establishment and Characterization of two Cell Lines with Different Grades of Differentiation Derived from one Primary Human Pancreatic Adenocarcinoma Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 61, 295–306.Google Scholar
  20. 20.
    Kemper, B., Carl, D., Schnekenburger, J., Bredebusch, I., Schäfer, M., Domschke, W., and von Bally, G. (2006) Investigations on Living Pancreas Tumor Cells by Digital Holographic Microscopy J. Biomed. Opt. 11, 34005.Google Scholar
  21. 21.
    Feng, C. L., Embrechts, A., Bredebusch, I., Bouma, A., Schnekenburger, J., García-Parajó, M., Domschke, W., Vancso, G. J., and Schönherr, H. (2007) Tailored Interfaces for Biosensors and Cell-Surface Interaction Studies via Activation and Derivatization of Polystyrene-block-Poly(tert-butyl acrylate) Thin Films Europ. Polym. J. 43, 2177–2190.Google Scholar
  22. 22.
    Schönherr, H. (2009) Coupling Chemistries for the Modification and Functionalization of Surfaces to Create Advanced Biointerfaces in Surface Design: Applications in Bioscience and Nanotechnology, Förch, R., Schönherr, H., and Jenkins, A. T. A. (Eds.), WILEY-VCH, pp. 3.Google Scholar
  23. 23.
    Staros, J. V., Wright, R. W., and Swingle, D. M. Enhancement by N-Hydroxysulfosuccinimide of Water-Soluble Carbodiimide-Mediated Coupling Reactions (1986) Anal. Biochem. 156, 220–2.Google Scholar
  24. 24.
    Lahiri, J., Isaacs, L., Tien, J., and Whitesides, G. M. A Strategy for the Generation of Surfaces Presenting Ligands for Studies of Binding Based on Active Ester as a Common Reactive Intermediate: A Surface Plasmon Resonance Study (1999) Anal. Chem. 71, 777–790.Google Scholar
  25. 25.
    Wojtyk, J. T. C., Morin, K. A., Boukherroub, R., and Wayner, D. D. M. Modification of Porous Silicon Surfaces with Active Ester Monolayers (2002) Langmuir 18, 6081–7.Google Scholar
  26. 26.
    Levy, R. and Maaloum, M. (2002) Measuring the Spring Constant of Atomic Force Microscopy Cantilevers: Thermal Fluctuation and Other Methods Nanotechnology 13, 33–37.Google Scholar
  27. 27.
    Ma, H. L., Jimenez, J., and Rajagopalan, R. (2000) Brownian Fluctuation Spectroscopy Using Atomic Force Microscopes Langmuir 16, 2254–2261.Google Scholar
  28. 28.
    Butt, H. J. and Jaschke, M. (1995) Thermal Noise in Atomic Force Microscopy Nanotechnology 6, 1–7.Google Scholar
  29. 29.
    Tortonese, M. and Kirk, M. (1997) Characterization of Application-Specific Probes for SPMs Proc. SPIE 3009, 53–60.Google Scholar
  30. 30.
    Cleveland, J. P., Manne, S., Bocek, D., and Hansma, P. K. (1993) A Non-Destructive Method for Determining the Spring Constants of Cantilevers for Scanning Force Microscopy Rev. Sci. Instrum. 64, 403–405.Google Scholar
  31. 31.
    Butt, H. J., Cappella, B., and Kappl, M. (2005) Force Measurements with the Atomic Force Microscope: Technique, Interpretation and Applications. Surf. Sci. Rep. 59, 1–152.Google Scholar
  32. 32.
    Siqueira, H. A. A., González-Cabrera, J., Ferré, J., Flannagan, R., and Siegfried, B. D. (2006) Analyses of Cry1Ab Binding in Resistant and Susceptible Strains of the European Corn Borer Appl. Environ. Microbiol. 72, 5318–5324.Google Scholar
  33. 33.
    Janshoff, A., Neitzert, M., Oberdörfer, Y., and Fuchs, H. (2000) Force Spectroscopy of Molecular Systems - Single Molecule Spectroscopy of Polymers and Biomolecules Angew. Chem. Int. Ed. 39, 3212–3237.Google Scholar
  34. 34.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., and Gaub, H.E. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM Science 276, 1109–1112.Google Scholar
  35. 35.
    Ludwig, M., Rief, M., Schmidt, L., Li, H., Oesterhelt, F., Gautel, M., and Gaub, H.E. (1999) AFM, a tool for single-molecule experiments Appl. Phys. A. 68, 173–176.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physical Chemistry IUniversity of SiegenSiegenGermany

Personalised recommendations