Skip to main content

AFM to Study Bio/Nonbio Interactions

  • Protocol
  • First Online:
Nanotechnology in Regenerative Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 811))

  • 2252 Accesses

Abstract

This chapter describes a versatile approach to immobilize proteins and other biomolecules on reactive self-assembled monolayers on gold as a means to study interactions (forces) between these biomolecules and nonbiological entities. Biomolecules are either immobilized on the surface of flat substrates or on the surface of gold-coated atomic force microscopy (AFM) probe tips. In addition to the immobilization protocols, the actual AFM experiments in liquid and the quantitative analysis of adhesive forces receive attention. With these procedures and tools at hand, a wide variety of problems in the area of bio/nonbio interactions can be addressed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasemo, B. (2002) Biological surface science Surf. Sci. 500, 656–677.

    Google Scholar 

  2. Kumar, C. S. S. R. (Ed.) (2006) Tissue, Cell and Organ Engineering, Wiley-VCH.

    Google Scholar 

  3. Schena, M. (2003) Microarray Analysis, Wiley-Liss, Wiley & Sons, NJ.

    Google Scholar 

  4. Shankaran, D. R. and Miura, N. (2007) Trends in interfacial design for surface plasmon resonance based immunoassays J. Phys. D: Appl. Phys. 40, 7187–7200 and references herein.

    Google Scholar 

  5. Castner, D. G. and Ratner, B. D. (2002) Biomedical Surface Science: Foundations to Frontiers Surf. Sci. 500, 28–60.

    Google Scholar 

  6. Denis, F.A., Hanarp, P., Sutherland, D.S., Gold, J., Mustin, C., Rouxhet, P.G., and Dufrene, Y.F. (2002) Protein adsorption on model surfaces with controlled nanotopography and chemistry Langmuir 18, 819–828.

    Google Scholar 

  7. Vadillo-Rodríguez, V., Busscher, H. J., Norde, W., de Vries, J., and van der Mei, H. C. (2004) Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata J. Coll. Interf. Sci. 278, 251–254.

    Google Scholar 

  8. van der Mei, H. C., de Vries, J., and Busscher, H. J. (2010) Weibull analyses of bacterial interaction forces measured using AFM Coll. Surf. B: Biointerfaces, doi:10.1016/j.colsurfb.2010.03.018.

    Google Scholar 

  9. Hoh; J. H. and Schoenenberger, C. A. (1994) Surface-morphology and mechanical-properties of MDCK monolayers by atomic force microscopy J. Cell Sci. 107, 1105–1114.

    Google Scholar 

  10. Israelachvili, J. N. (1991) Intermolecular and Surface Forces, 2nd edn., Academic Press, London.

    Google Scholar 

  11. Israelachvili, J. (2005) Differences between non-specific and bio-specific, and between equilibrium and non-equilibrium, interactions in biological systems Quarterly Rev. Biophys. 38, 331–337.

    Google Scholar 

  12. Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic Force Microscope Phys. Rev. Lett. 56, 930–3.

    Google Scholar 

  13. Schönherr, H. and Vancso, G. J. (2010) Scanning Force Microscopy of Polymers, Springer, Vienna.

    Google Scholar 

  14. Colton, R. J., Engel, A., Frommer, J. E., Gaub, H. E., Gewirth, A. A., Guckenberger, R., Rabe, J., Heckl, W. M., and Parkinson, B., (1998) Procedures in Scanning Probe Microscopies, Wiley, New York.

    Google Scholar 

  15. Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S., and Lieber, C. M. (1994) Functional Group Imaging by Chemical Force Microscopy Science 265, 2071–4.

    Google Scholar 

  16. Schönherr, H. and Vancso, G. J. (2006) Chemical Force Microscopy: Nanometer Scale Surface Analysis with Chemical Sensitivity in SPM beyond imaging: Manipulation of Molecules and Nanostructures, Samori, P. (Ed.), Wiley-VCH, 275–314.

    Google Scholar 

  17. Lee, G. U., Kidwell, D. A., Colton, R. J. (1994) Sensing discrete streptavidion biotin interactions with atomic force microscopy Langmuir 10, 354–357.

    Google Scholar 

  18. Schönherr, H. (1999) From Functional Group Ensembles to Single Molecules: Scanning Force Microscopy of Supramolecular and Polymeric Systems Ph.D. thesis, University of Twente, The Netherlands.

    Google Scholar 

  19. Elsässer, H.P., Lehr, U., Agricola, B., Kern, H.F. (1992) Establishment and Characterization of two Cell Lines with Different Grades of Differentiation Derived from one Primary Human Pancreatic Adenocarcinoma Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 61, 295–306.

    Google Scholar 

  20. Kemper, B., Carl, D., Schnekenburger, J., Bredebusch, I., Schäfer, M., Domschke, W., and von Bally, G. (2006) Investigations on Living Pancreas Tumor Cells by Digital Holographic Microscopy J. Biomed. Opt. 11, 34005.

    Google Scholar 

  21. Feng, C. L., Embrechts, A., Bredebusch, I., Bouma, A., Schnekenburger, J., García-Parajó, M., Domschke, W., Vancso, G. J., and Schönherr, H. (2007) Tailored Interfaces for Biosensors and Cell-Surface Interaction Studies via Activation and Derivatization of Polystyrene-block-Poly(tert-butyl acrylate) Thin Films Europ. Polym. J. 43, 2177–2190.

    Google Scholar 

  22. Schönherr, H. (2009) Coupling Chemistries for the Modification and Functionalization of Surfaces to Create Advanced Biointerfaces in Surface Design: Applications in Bioscience and Nanotechnology, Förch, R., Schönherr, H., and Jenkins, A. T. A. (Eds.), WILEY-VCH, pp. 3.

    Google Scholar 

  23. Staros, J. V., Wright, R. W., and Swingle, D. M. Enhancement by N-Hydroxysulfosuccinimide of Water-Soluble Carbodiimide-Mediated Coupling Reactions (1986) Anal. Biochem. 156, 220–2.

    Google Scholar 

  24. Lahiri, J., Isaacs, L., Tien, J., and Whitesides, G. M. A Strategy for the Generation of Surfaces Presenting Ligands for Studies of Binding Based on Active Ester as a Common Reactive Intermediate: A Surface Plasmon Resonance Study (1999) Anal. Chem. 71, 777–790.

    Google Scholar 

  25. Wojtyk, J. T. C., Morin, K. A., Boukherroub, R., and Wayner, D. D. M. Modification of Porous Silicon Surfaces with Active Ester Monolayers (2002) Langmuir 18, 6081–7.

    Google Scholar 

  26. Levy, R. and Maaloum, M. (2002) Measuring the Spring Constant of Atomic Force Microscopy Cantilevers: Thermal Fluctuation and Other Methods Nanotechnology 13, 33–37.

    Google Scholar 

  27. Ma, H. L., Jimenez, J., and Rajagopalan, R. (2000) Brownian Fluctuation Spectroscopy Using Atomic Force Microscopes Langmuir 16, 2254–2261.

    Google Scholar 

  28. Butt, H. J. and Jaschke, M. (1995) Thermal Noise in Atomic Force Microscopy Nanotechnology 6, 1–7.

    Google Scholar 

  29. Tortonese, M. and Kirk, M. (1997) Characterization of Application-Specific Probes for SPMs Proc. SPIE 3009, 53–60.

    Google Scholar 

  30. Cleveland, J. P., Manne, S., Bocek, D., and Hansma, P. K. (1993) A Non-Destructive Method for Determining the Spring Constants of Cantilevers for Scanning Force Microscopy Rev. Sci. Instrum. 64, 403–405.

    Google Scholar 

  31. Butt, H. J., Cappella, B., and Kappl, M. (2005) Force Measurements with the Atomic Force Microscope: Technique, Interpretation and Applications. Surf. Sci. Rep. 59, 1–152.

    Google Scholar 

  32. Siqueira, H. A. A., González-Cabrera, J., Ferré, J., Flannagan, R., and Siegfried, B. D. (2006) Analyses of Cry1Ab Binding in Resistant and Susceptible Strains of the European Corn Borer Appl. Environ. Microbiol. 72, 5318–5324.

    Google Scholar 

  33. Janshoff, A., Neitzert, M., Oberdörfer, Y., and Fuchs, H. (2000) Force Spectroscopy of Molecular Systems - Single Molecule Spectroscopy of Polymers and Biomolecules Angew. Chem. Int. Ed. 39, 3212–3237.

    Google Scholar 

  34. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., and Gaub, H.E. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM Science 276, 1109–1112.

    Google Scholar 

  35. Ludwig, M., Rief, M., Schmidt, L., Li, H., Oesterhelt, F., Gautel, M., and Gaub, H.E. (1999) AFM, a tool for single-molecule experiments Appl. Phys. A. 68, 173–176.

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Dr. A.T.A. Jenkins and Prof. Dr. Q. Huang for granting their kind permission to use unpublished collaborative data in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schönherr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schönherr, H. (2012). AFM to Study Bio/Nonbio Interactions. In: Navarro, M., Planell, J. (eds) Nanotechnology in Regenerative Medicine. Methods in Molecular Biology, vol 811. Humana Press. https://doi.org/10.1007/978-1-61779-388-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-388-2_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-387-5

  • Online ISBN: 978-1-61779-388-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics