Skip to main content

Measuring Wettability of Biosurfaces at the Microscale

  • Protocol
  • First Online:
Nanotechnology in Regenerative Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 811))

Abstract

Determining the contact angle of a liquid on a solid surface is a simple method to assess the surface wettability. The most common method to measure the contact angle of a liquid consists of capturing the profile of a sessile drop of a few microliters on the surface using an optical system. Currently, this is a widely used technique to analyze wettability both in researched materials and in products of multiple technological fields. However, the drop dispensed by a traditional macroscopic contact angle meter is too big to assess the wettability properties of individual topographical features and/or chemical patterns at the micro/nanoscale. Recently, contact angle meters that can discharge drops that are microscopic, with volumes in the range of 1 × 10−3 to 10−5 μL have been developed. The novel microscopic contact angle meter uses a pneumatic injection system to discharge the drop of the liquid through a capillary of a few micrometers of internal diameter and a high-resolution ultrafast digital camera.

We have tested different biosurfaces – microimprinted polymers for biosensors, calcium-phosphate cements with different topographical microfeatures, orthodontic wires – and assessed the potential applicability in the field in comparison with the conventional macroscopic contact angle meters.

This protocol describes the basic tasks needed to test wettability on biosurfaces with a microscopic contact angle meter. The focus of the protocol is on the challenging methodological steps and those that differentiate the use of this equipment to the use of a traditional macroscopic contact angle meter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young, T. (1805) An Essay on the Cohesion of Fluids Phil Trans Roy Soc London 95, 65–87.

    Google Scholar 

  2. Good, J.R., and van Oss, C.J. (1992) The Modern Theory of Contact Angles and the Hydrogen Bond Components of Surface Energies. In: Schraeder, M.E., and Loeb, G.I., eds. Modern Approaches to Wettability. Theory and Applications; New York and London: Plenum Press, 1–28.

    Google Scholar 

  3. Butt, H.J., Graf, K., and Kappl, M. (2004) Contact angle phenomena and wetting. In: Physics and Chemistry of Interfaces; Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 125–52.

    Google Scholar 

  4. Ratner, B.D. (2004) Surface Properties and Surface Characterization of Materials. In: Ratber, B.D., Hoffman, A.S., Schoen, F.J., and Lemons, J.E., eds. Biomaterials Science. An Introduction to Materials in Medicine; San Diego, CA: Elsevier Academic Press, 40–58.

    Google Scholar 

  5. Michiardi, A., Aparicio, C. Ratner, B., Planell, J.A., and Gil, F.J. (2007) The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces Biomaterials 28, 586–94.

    Google Scholar 

  6. Pegueroles, M., Aparicio, C., Bosio, M., Engel, E., Gil, F.J., Planell, J.A., and Altankov, G. (2010) Spatial Organization of Osteoblast Fibronectin-Matrix on Titanium Surface – Effects of Roughness, Chemical Heterogeneity, and Surface Free Energy Acta Biomaterialia 6, 291–301.

    Google Scholar 

  7. Straumann Holding AH, SLActive – the third generation in implant surface technology http://www.straumann.com/ci_ch_presskit_slactive_ids07.pdf (accessed October 2010).

    Google Scholar 

  8. Matsuda, N., Shimizu, T., Yamato, M., and Okano, T. (2007) Tissue Engineering Based on Cell Sheet Technology Adv Mater 19, 3089–99.

    Google Scholar 

  9. Chu, K.-H., Xiao, R., and Wang, E.N. (2010) Uni-directional liquid spreading on asymmetric nanostructured surfaces Nature Mater 9, 413–7.

    Google Scholar 

  10. Chiou, N.-R., Lu, C., Guan, J., Lee, L.J., and Epstein, A.J. (2007) Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties Nature Nanotech 2, 354 – 57.

    Google Scholar 

  11. Mata, A., Hsu, L., Capito, R., Aparicio, C., Henrikson, K., and Stupp, S.I. (2009) Micropatterning of bioactive self-assembling gels Soft Matter 5, 1228–36.

    Google Scholar 

  12. Hannachi, E., Itoga, K., Kumashiro, Y., Kobayashi, J., Yamato, J., and Okano, T. (2009) Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing Biomaterials 30, 5427–32.

    Google Scholar 

  13. Maritines, E., Seunarine, K., Morgan, H., Gadegaard, N., Wilkinson, C.D.W., and Riehle, M.O. (2005) Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett 5, 2097–130.

    Google Scholar 

  14. Dupuis, A., Leopoldes, J., Bucknall, D. G., and Yeomans, J. M. (2005) Control of drop positioning using chemical patterning Appl Phys Lett 87, 024103.

    Google Scholar 

  15. Masahashi, N., Mizukoshi, Y., Semboshi, S., and Ohtsu, N. (1998) Superhydrophilicity of rutile TiO2 prepared by anodic oxidation in high concentration sulfuric acid electrolyte Chem Letters 37, 1126–7.

    Google Scholar 

  16. Taylor, M, Urquhart, A.J., Zelzer, M., Davies, M.C., and Alexander, M.R. (2007) Picoliter Water Contact Angle Measurement on Polymers Langmuir 23, 6875–8.

    Google Scholar 

  17. Erbil, H.Y.(1997) Surface Tension of Polymers. In: Birdi, K.S., ed. Handbook of Surface and Colloid Chemistry; Boca Raton, FL: CRC Press, 259–306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrado Aparicio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Aparicio, C., Maazouz, Y., Yang, D. (2012). Measuring Wettability of Biosurfaces at the Microscale. In: Navarro, M., Planell, J. (eds) Nanotechnology in Regenerative Medicine. Methods in Molecular Biology, vol 811. Humana Press. https://doi.org/10.1007/978-1-61779-388-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-388-2_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-387-5

  • Online ISBN: 978-1-61779-388-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics