Advertisement

Is Nanotechnology the Key to Unravel and Engineer Biological Processes?

  • Melba NavarroEmail author
  • Josep A. Planell
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 811)

Abstract

Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

Key words

Regenerative medicine Nanotechnology Tissue engineering 

References

  1. 1.
    Gurtner, G.C., Calleghan, M.J., Longaker, M.T. (2007) Progress and Potential for Regenerative Medicine, Annu. Rev. Med. 58, 299312CrossRefGoogle Scholar
  2. 2.
    Nanomedicine, Nanotechnology for health, (2006) ETP Strategic Research Agenda for Nanomedicine, Available online at: http://cordis.europa.eu/nanotechnology/nanomedicine.htm
  3. 3.
    Haseltine, W. (2003) Regenerative medicine 2003: An overview, J Regener Med 4, 15–18Google Scholar
  4. 4.
    Mironov, V., Visconti, R.P., Markwald, R.R. (2004) What is regenerative medicine? Emergence of applied stem cell and developmental biology, Expert Opin Biol Ther 4, 773–781Google Scholar
  5. 5.
    Hardouin, P., Anselme, K., Flautre, B., Bianchi, F., Bascoulenguet, G. & Bouxin, B. (2000) Tissue engineering and skeletal diseases. Joint Bone Spine 67, 419–424Google Scholar
  6. 6.
    Silva, G.A., Introduction to nanotechnology an its applications to medicine, Surg Neurol 61, 216–220Google Scholar
  7. 7.
    Craighead, H., Leong, K. (2000). Biological, medical and health applications. In: Research Directions, Roco, M.C., Williams, R.S., Alivisatos, P (eds) Kluwer Academic PublishersGoogle Scholar
  8. 8.
    Whitesides, G.M. (2003) The “right” size in nanobiotechnology, Nat Biotechnol 18, 760–763Google Scholar
  9. 9.
    Nienmeyer, C.M., Mirkin, C.A. eds (2004) Nanobiotechnology: Concepts, Applications and Perspectives, WileyGoogle Scholar
  10. 10.
    Roco, M. (2005) Converging Technologies In: Biomedical Nanotechnology, Malsch, N.H. (ed) CRC PressGoogle Scholar
  11. 11.
    Roco, M.C., Bainbridge, W.S. (eds) Converging Technologies for Improving Human Performance. NSF-DOC Report, 2002; Kluwer: Boston. URL: http//wtec.org/ConvergingTechnologies
  12. 12.
    National Research Council: Small wonders-endless frontiers, a review of the National Nanotechnology Initiative. The National Academies Press, Washington DC; 2002. Available online at: URL: http//www.nsf.gov/home/cressprgm/nano/smallwonders_pdffiles.htm
  13. 13.
    National Research Council: Implications of emerging micro and nanotechnologies. The National Academies Press, Washington DC, 2002Google Scholar
  14. 14.
    Macchiarini, P., Jungebluth, P., Go, T., Asnaghi, M.A., Rees, L.E., Cogan, T.A., Dodson, A., Martorell, J., Bellini, S., Parnigotto, P.P., Dickinson, S.C., Hollander, A.P., Mantero, A., Conconi, M.T., Birchall, M.A. (2008) Clinical transplantation of a tissue-engineered airway, Lancet 372, 2023–2030CrossRefGoogle Scholar
  15. 15.
    Zhang, G., Hu, Q., Braunlin, E.A., Suggs, L.J., Zhang, J. (2010) Enhancing Efficacy of Stem Cell Transplantation to the Heart with a PEGylated Fibrin Biomatrix, Advances in Tissue Engineering: Angiogenesis 20, 195–205Google Scholar
  16. 16.
    European Technology Platform on Nanomedicine, Nanotechnology for health (2005) European Commission, Luxembourg. Available online at: http://cordis.europa.eu/nanotechnology/nanomedicine.htm
  17. 17.
    Ishima, A., Yanagida, T. (2001) Single molecule nanobioscience, Trends Biochem Sci 26, 438–444CrossRefGoogle Scholar
  18. 18.
    Müller, D.J., Janovjak, H., Lehto, T., Kuerschner, L., Anderson, K. (2002) Observing structure, function and assembly of single proteins by AFM, Prog Biophys Mol Biol 79, 1–43CrossRefGoogle Scholar
  19. 19.
    Misevic, G.N. (2001) Atomic force microscopy measurements: binding strength between a single pair of molecules in physiological solutions, Mol Biotechnol 18, 149–154CrossRefGoogle Scholar
  20. 20.
    Bao, G. (2002) Mechanics of Biomolecules, J Mechanics Phys Solids 50, 2237–2274CrossRefGoogle Scholar
  21. 21.
    Ikai, A., Idiris, A., Sekiguchi, H., Arakawa, H., Nishida, S. (2002) Intra and intermolecular mechanics of proteins and polypeptides studies by AFM. Appl Surf Sci 188, 506–512CrossRefGoogle Scholar
  22. 22.
    Baneyx, G., Baugh, L., Vogel, V. (2001) Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer, Proc Natl Acad Sci USA 98; 14464–14468CrossRefGoogle Scholar
  23. 23.
    Lower, S.K., Hochella, M.F.H., Beveridge, T.J. (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FEDOH, Science 292, 1360–1363CrossRefGoogle Scholar
  24. 24.
    Couzin, J. (2002) Breakthrough of the year: small RNAs make big splash, Science 298, 2296–2297CrossRefGoogle Scholar
  25. 25.
    Jain, K.K. (2007) Nanobiotechnology: Applications, Markets and Companies. Basel: Jain (Ed) PharmaBiotech PublicationsGoogle Scholar
  26. 26.
    Bao, Y.P., Wei, T.F., Lefebvre, P.A., An, H., He, L., Kunkel, G.T. (2006) Detection of protein analytes via nanoparticle-based bio bar code technology. Anal Chem 78, 2055–2059CrossRefGoogle Scholar
  27. 27.
    Davis, A.V., Yeh, R.M., Raymond, K.N. (2002) Supramolecular assembly dynamics, Proc Natl Acad Sci USA 99, 4793–4796CrossRefGoogle Scholar
  28. 28.
    Whitesides, G., Boncheva, M. (2002) Beyond molecules: self assembling of mesoscopic and macroscopic component, Proc Natl Acad Sci USA 99, 4769–4774CrossRefGoogle Scholar
  29. 29.
    Geho, D.H., Jones, C.D., Petricoin, E.F., Liotta, L.A. (2006) Nanoparticles: potential biomarker harvesters. Curr Opin Chem Biol 10, 56–61CrossRefGoogle Scholar
  30. 30.
    Chan, W.C., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., Nie, S. (2002) Luminiscent quantum dots for multiplexed biological detection and imaging, Curr Opin Biotechnol 13, 40–46CrossRefGoogle Scholar
  31. 31.
    Lin, Y., Taylor, S., Huaping, L., Shiral, K. A., Qu, L., Wang, W., Gu, L., Zhou B., Sun Y-P., (2004) Advances toward bioapplications of carbon nanotubes, J Mater Chem 14, 527–541 KGoogle Scholar
  32. 32.
    Ciofani, G., Raffa, V., Menciassi, A., and Cuschieri, A. (2009) Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today 4, 8–10CrossRefGoogle Scholar
  33. 33.
    Jain, K.K. (2005) Nanotechnology-based lab-on-a-chip devices. In: Fuchs J, Podda M. (eds). Encyclopedia of Diagnostic Genomics and Proteomics, New York: Marcel Dekkar IncGoogle Scholar
  34. 34.
    Roco, M.C. (2001) International strategy for nanotechnology research and development, J Nanoparticle Res 3, 353–360CrossRefGoogle Scholar
  35. 35.
    The National Nanotechnology Initiative, Supplement to the president’s 2011 budget, National Science and Technology Council, USA 2010. Available online at: http://www.nano.gov/NNI_2011_budget_supplement.pdf
  36. 36.
    National nanotechnology strategy annual report 2008–2009 (2009) Australian office of nanotechnologyGoogle Scholar
  37. 37.
    Nanotechnology in Australia, Trends, applications and collaborative opportunities (2009) Australian Academy of Science http://www.science.org.au/reports/documents/nanotechnology09.pdf
  38. 38.
    European Commission, EU Policy for nanosciences and nanotechnologies. Available online at: ftp://ftp.cordis.europa.eu/pub/nanotechnology/docs/eu_nano_policy_2004-07.pdf
  39. 39.
    Nanotechnology Strategy in Korea, (2003) Asia Pacific Nanotechnology Weekly 1, Nanotechnology Research Institute, AIST. Available online at: http://www.nanoworld.jp/apnw/articles/library/pdf/27.pdf
  40. 40.
    Kishi, T., Bando, Y. (2004) Status and trends of nanotechnology R&D in Japan. Nat Materials 3, 129–131CrossRefGoogle Scholar
  41. 41.
    Okada, S. (2009) Big on nanotech: Japan is one of the world leaders in nanotechnology, but its position could be threatened by a lack of govern, Entrepreneur. Available online at: http://www.entrepreneur.com/tradejournals/article/print/201599863.html 2010
  42. 42.
    Roadmap in nanomedicine towards 2020. Expert report 2009, ETP Nanomedicine, European Commission. Available online at: http://www.etp-nanomedicine.eu/public/press-documents/publications/etpn-publications/091022_ETPN_Report_2009.pdf

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Bioengineering of Catalonia (IBEC)BarcelonaSpain
  2. 2.Networking Research Centre on BioengineeringBiomaterials and Nanomedicine, CIBER-BBNBarcelonaSpain

Personalised recommendations