Skip to main content

Modulation of Cellular Respiration by Endogenously Produced Nitric Oxide in Rat Hippocampal Slices

  • Protocol
  • First Online:
Mitochondrial Bioenergetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 810))

Abstract

Nitric oxide (NO) is a ubiquitous signaling molecule that participates in neuromolecular phenomena associated with memory formation as well as in excitotoxicity. In the hippocampus, neuronal •NO production is coupled to the activation of the NMDA-type of glutamate receptor. More recently, Cytochrome c oxidase has emerged as a novel target for •NO, which competes with O2 for binding to this mitochondrial complex. This reaction establishes •NO not only as a regulator of cellular metabolism but possibly also as a regulator of mitochondrial production of reactive oxygen species which participate in cellular signaling. A major gap in the understanding of •NO bioactivity, namely, in the hippocampus, has been the lack of knowledge of its concentration dynamics. Here, we present a detailed description of the simultaneous recording of •NO and O2 concentration dynamics in rat hippocampal slices. Carbon fiber microelectrodes are fabricated and applied for real-time measurements of both gases in a system close to in vivo models. This approach allows for a better understanding of the current paradigm by which an intricate interplay between •NO and O2 regulates cellular respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  2. Poulos TL (2006) Soluble guanylate cyclase. Curr Opin Struct Biol 16:736–743

    Article  PubMed  CAS  Google Scholar 

  3. Kleppisch T, Feil R (2009) cGMP signalling in the mammalian brain: role in synaptic plasticity and behaviour. Handb Exp Pharmacol 191:549–579

    Article  PubMed  CAS  Google Scholar 

  4. Moncada S, Higgs EA (2006) Nitric oxide and the vascular endothelium. Handb Exp Pharmacol 176(1):213–254

    Article  PubMed  Google Scholar 

  5. Bolanos JP, Peuchen S, Heales SJ, Land JM, Clark JB (1994) Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem 63:910–916

    Article  PubMed  CAS  Google Scholar 

  6. Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298

    Article  PubMed  CAS  Google Scholar 

  7. Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345:50–54

    Article  PubMed  CAS  Google Scholar 

  8. Schweizer M, Richter C (1994) Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem Biophys Res Commun 204:169–175

    Article  PubMed  CAS  Google Scholar 

  9. Brudvig GW, Stevens TH, Chan SI (1980) Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 19:5275–5285

    Article  PubMed  CAS  Google Scholar 

  10. Gibson QH, Greenwood C (1963) Reactions of cytochrome oxidase with oxygen and carbon monoxide. Biochem J 86:541–554

    PubMed  CAS  Google Scholar 

  11. Stevens TH, Brudvig GW, Bocian DF, Chan SI (1979) Structure of cytochrome a3-Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies. Proc Natl Acad Sci USA 76(7):3320–3324

    Article  PubMed  CAS  Google Scholar 

  12. Wainio WW (1955) Reactions of cytochrome oxidase. The Journal of biological chemistry 212(2):723–733

    PubMed  CAS  Google Scholar 

  13. Antunes F, Boveris A, Cadenas E (2004) On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc Natl Acad Sci USA 101:16774–16779

    Article  PubMed  CAS  Google Scholar 

  14. Antunes F, Cadenas E (2007) The mechanism of cytochrome C oxidase inhibition by nitric oxide. Front Biosci 12:975–985

    Article  PubMed  CAS  Google Scholar 

  15. Cooper CE, Mason MG, Nicholls P (2008) A dynamic model of nitric oxide inhibition of mitochondrial cytochrome c oxidase. Biochimica et biophysica acta 1777:867–876

    Article  PubMed  CAS  Google Scholar 

  16. Ledo A, Barbosa R, Cadenas E, Laranjinha J (2010) Dynamic and interacting profiles of *NO and O2 in rat hippocampal slices. Free Radic Biol Med 48:1044–1050

    Article  PubMed  CAS  Google Scholar 

  17. Jarrard LE (1995) What does the hippocampus really do? Behav Brain Res 71(1–2):1–10

    Article  PubMed  CAS  Google Scholar 

  18. Garthwaite J, Garthwaite G, Palmer RM, Moncada S (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 172(4–5):413–416

    PubMed  CAS  Google Scholar 

  19. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64(1):51–68

    Article  PubMed  CAS  Google Scholar 

  20. Hopper RA, Garthwaite J (2006) Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. J Neurosci 26:11513–11521

    Article  PubMed  CAS  Google Scholar 

  21. Laranjinha J, Ledo A (2007) Coordination of physiologic and toxic pathways in hippocampus by nitric oxide and mitochondria. Front Biosci 12:1094–1106

    Article  PubMed  CAS  Google Scholar 

  22. Zhuo M, Hawkins RD (1995) Long-term depression: a learning-related type of synaptic plasticity in the mammalian central nervous system. Rev Neurosci 6:259–277

    Article  PubMed  CAS  Google Scholar 

  23. Zorumski CF, Izumi Y (1998) Modulation of LTP induction by NMDA receptor activation and nitric oxide release. Prog Brain Res 118:173–182

    Article  PubMed  CAS  Google Scholar 

  24. Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  PubMed  CAS  Google Scholar 

  25. Anderson P, Bliss TV, Skrede KK (1971) Lamellar organization of hippocampal pathways. Exp Brain Res 13:222–238

    PubMed  CAS  Google Scholar 

  26. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  27. Ferreira NR, Ledo A, Frade JG, Gerhardt GA, Laranjinha J, Barbosa RM (2005) Electroche-mical measurement of endogenously produced nitric oxide in brain slices using Nafion/o-phenylenediamine modified carbon fiber microelectrodes. Analytica Chimica Acta 535:1–7

    Article  CAS  Google Scholar 

  28. Gerhardt GA, Oke AF, Nagy G, Moghaddam B, Adams RN (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res 290:390–395

    Article  PubMed  CAS  Google Scholar 

  29. Ledo A, Barbosa RM, Gerhardt GA, Cadenas E, Laranjinha J (2005) Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc Natl Acad Sci USA 102:17483–17488

    Article  PubMed  CAS  Google Scholar 

  30. Jiang C, Agulian S, Haddad GG (1991) O2 tension in adult and neonatal brain slices under several experimental conditions. Brain Res 568:159–164

    Article  PubMed  CAS  Google Scholar 

  31. Mulkey DK, Henderson RA 3rd, Olson JE, Putnam RW, Dean JB (2001) Oxygen measurements in brain stem slices exposed to normobaric hyperoxia and hyperbaric oxygen. J Appl Physiol 90:1887–1899

    Article  PubMed  CAS  Google Scholar 

  32. Zacharia IG, Deen WM (2005) Diffusivity and solubility of nitric oxide in water and saline. Ann Biomed Eng 33:214–222

    Article  PubMed  Google Scholar 

  33. Friedemann MN, Robinson SW, Gerhardt GA (1996) o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 68:2621–2628

    Article  PubMed  CAS  Google Scholar 

  34. Gerhardt GA, Hoffman AF (2001) Effects of recording media composition on the responses of Nafion-coated carbon fiber microelectrodes measured using high-speed chronoamperometry. J Neurosci Methods 109:13–21

    Article  PubMed  CAS  Google Scholar 

  35. Santos RM, Lourenco CF, Piedade AP, Andrews R, Pomerleau F, Huettl P, Gerhardt GA, Laranjinha J, Barbosa RM (2008) A comparative study of carbon fiber-based microelectrodes for the measurement of nitric oxide in brain tissue. Biosens Bioelectron 24:704–709

    Article  PubMed  CAS  Google Scholar 

  36. Erecinska M, Silver IA (2001) Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 128:263–276

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by grant PTDC/SAU-NEU/108992/2008 from FCT (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Ledo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ledo, A., Barbosa, R.M., Laranjinha, J. (2012). Modulation of Cellular Respiration by Endogenously Produced Nitric Oxide in Rat Hippocampal Slices. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 810. Humana Press. https://doi.org/10.1007/978-1-61779-382-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-382-0_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-381-3

  • Online ISBN: 978-1-61779-382-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics