Skip to main content

NMR Methodologies for Studying Mitochondrial Bioenergetics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 810))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a technique with an increasing importance in the study of metabolic diseases. Its initial important role in the determination of chemical structures (1, 2) has been considerably overcome by its potential for the in vivo study of metabolism (3–5). The main characteristic that makes this technique so attractive is its noninvasiveness. Only nuclei capable of transitioning between energy states, in the presence of an intense and constant magnetic field, are studied. This includes abundant nuclei such as proton (1H) and phosphorous (31P), as well as stable isotopes such as deuterium (2H) and carbon 13 (13C). This allows a wide range of applications that vary from the determination of water distribution in tissues (as obtained in a magnetic resonance imaging scan) to the calculation of metabolic fluxes under ex vivo and in vivo conditions without the need to use radioactive tracers or tissue biopsies (as in a magnetic resonance spectroscopy (MRS) scan). In this chapter, some technical aspects of the methodology of an NMR/MRS experiment as well as how it can be used to study mitochondrial bioenergetics are overviewed. Advantages and disadvantages of in vivo MRS versus high-resolution NMR using proton high rotation magic angle spinning (HRMAS) of tissue biopsies and tissue extracts are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kumar R, Ernst RR, Wuthrich K (1980) A two-dimensional nuclear overhauser enhancement (2D NOE) experiment for the elucidation of complete proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun 95:1–6

    Article  PubMed  CAS  Google Scholar 

  2. Marion D, Wuthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of H-1-H-1 spin-spin coupling-constants in proteins. Biochem Biophys Res Commun 113:967–974

    Article  PubMed  CAS  Google Scholar 

  3. Hoult DI, Busby SJ, Gadian DG, Radda GK, Richards RE, Seeley PJ (1974) Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 252:285–287

    Article  PubMed  CAS  Google Scholar 

  4. Wallace DC (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821

    Article  PubMed  CAS  Google Scholar 

  5. Maassen JA, Janssen GM, t Hart LM (2005) Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med 37:213–221

    Article  PubMed  CAS  Google Scholar 

  6. Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10:12–31

    Article  PubMed  CAS  Google Scholar 

  7. Szendroedi J, Roden M (2008) Mitochondrial fitness and insulin sensitivity in humans. Diabetologia 51:2155–2167

    Article  PubMed  CAS  Google Scholar 

  8. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    Article  PubMed  CAS  Google Scholar 

  9. Chance EM, Seeholzer SH, Kobayashi K, Williamson JR (1983) Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J Biol Chem 258:13785–13794

    PubMed  CAS  Google Scholar 

  10. Weiss RG, Gloth ST, Kalil-Filho R, Chacko VP, Stern MD, Gerstenblith G (1992) Indexing tricarboxylic acid cycle flux in intact hearts by carbon-13 nuclear magnetic resonance. Circ Res 70:392–408

    PubMed  CAS  Google Scholar 

  11. Carvalho RA, Rodrigues TB, Zhao P, Jeffrey FM, Malloy CR, Sherry AD (2004) A 13C isotopomer kinetic analysis of cardiac metabolism: influence of altered cytosolic redox and [Ca2+]. Am J Physiol Heart Circ Physiol 287(2):H889–H895

    Article  PubMed  CAS  Google Scholar 

  12. Fitzpatrick SM, Hetherington HP, Behar KL, Shulman RG (1990) The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. J Cereb Blood Flow Metab 10(2):170–179

    Article  PubMed  CAS  Google Scholar 

  13. Doan BT, Autret G, Mispelter J, Méric P, Même W, Montécot-Dubourg C, Corrèze JL, Szeremeta F, Gillet B, Beloeil JC (2009) Simultaneous two-voxel localized 1H-observed 13C-edited spectroscopy for in vivo MRS on rat brain at 9.4T: Application to the investigation of excitotoxic lesions. J Magn Reson 198:94–104

    Article  PubMed  CAS  Google Scholar 

  14. Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25

    Article  PubMed  CAS  Google Scholar 

  15. Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281:E100–E112

    PubMed  CAS  Google Scholar 

  16. Brindle KM, Blackledge MJ, Challiss RA, Radda GK (1989) 31P NMR magnetization-transfer measurements of ATP turnover during steady-state isometric muscle contraction in the rat hind limb in vivo. Biochemistry 28:4887–4893

    Article  PubMed  CAS  Google Scholar 

  17. Jucker BM, Dufour S, Ren J, Cao X, Previs SF, Underhill B, Cadman KS, Shulman GI (2001) Assessment of mitochondrial energy coupling in vivo by 13/31P NMR. Proc Natl Acad Sci USA 97:6880–6884

    Article  Google Scholar 

  18. Lei H, Ugurbil K, Chen W (2003) Measurement of unidirectional Pi to ATP flux in human visual cortex at 7T by using in vivo 31P magnetic resonance spectroscopy. Proc Natl Acad Sci USA 100:14409–14414

    Article  PubMed  CAS  Google Scholar 

  19. Padfield KE, Astrakas LG, Zhang Q, Gopalan S, Dai G, Mindrinos MN, Tompkins RG, Rahme LG, Tzika AA (2005) Burn injury causes mitochondrial dysfunction in skeletal muscle. Proc Natl Acad Sci USA 102:5368–5373

    Article  PubMed  CAS  Google Scholar 

  20. Shulman RG, Brown TR, Ugurbil K, Ogawa S, Cohen SM, den Hollander JA (1979) Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205:160–166

    Article  PubMed  CAS  Google Scholar 

  21. Neurohr KJ, Barrett EJ, Shulman RG (1983) In vivo carbon-13 nuclear magnetic resonance studies of heart metabolism. Proc Natl Acad Sci USA 80:1603–1607

    Article  PubMed  CAS  Google Scholar 

  22. Sillerud LO, Han CH, Bitensky MW, Francendese AA (1986) Metabolism and structure of triacylglycerols in rat epididymal fat pad adipocytes determined by 13C nuclear magnetic resonance. J Biol Chem 261:4380–4388

    PubMed  CAS  Google Scholar 

  23. Jue T, Lohman JA, Ordidge RJ, Shulman RG (1987) Natural abundance 13C NMR spectrum of glycogen in humans. Magn Reson Med 5:377–389

    Article  PubMed  CAS  Google Scholar 

  24. Shulman GI, Rothman DL, Smith D, Johnson CM, Blair JB, Shulman RG, DeFronzo RA (1985) Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy. J Clin Invest 76:1229–1236

    Article  PubMed  CAS  Google Scholar 

  25. Shulman GI, Rothman DL, Chung Y, Rossetti L, Petit WA Jr, Barrett EJ, Shulman RG (1988) 13C NMR studies of glycogen turnover in the perfused rat liver. J Biol Chem 263:5027–5039

    PubMed  CAS  Google Scholar 

  26. Bachelard H (1998) Landmarks in the application of 13C-magnetic resonance spectroscopy to studies of neuronal/glial relationships. Dev Neurosci 20:277–288

    Article  PubMed  CAS  Google Scholar 

  27. Gruetter R, Novotny EJ, Boulware SD, Mason GF, Rothman DL, Shulman GI, Prichard JW, Shulman RG (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1-13C]glucose. J Neurochem 63:1377–1385

    Article  PubMed  CAS  Google Scholar 

  28. Boumezbeur F, Mason GF, de Graaf RA, Behar KL, Cline GW, Shulman GI, Rothman DL, Petersen KF (2010) Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 30:211–221

    Article  PubMed  CAS  Google Scholar 

  29. Henry P-G, Öz G, Provencher S, Gruetter R (2003) Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel. NMR Biomed 16:400–412

    Article  PubMed  CAS  Google Scholar 

  30. Jeffrey FM, Reshetov A, Storey CJ, Carvalho RA, Sherry AD, Malloy CR (1999) Use of a single 13C NMR resonance of glutamate for measuring oxygen consumption in tissue. Am J Physiol 277:E1111–E1121

    PubMed  CAS  Google Scholar 

  31. Carvalho RA, Babcock EE, Jeffrey FM, Sherry AD, Malloy CR (1999) Multiple bond 13C-1C spin-spin coupling provides complementary information in a 13C NMR isotopomer analysis of glutamate. Magn Reson Med 42:197–200

    Article  PubMed  CAS  Google Scholar 

  32. Jessen ME, Kovarik TE, Jeffrey FM, Sherry AD, Storey CJ, Chao RY, Ring WS, Malloy CR (1992) Effects of amino acids on substrate selection, anaplerosis, and left ventricular function in the ischemic reperfused rat heart. J Clin Invest 92:831–839

    Article  Google Scholar 

  33. Carvalho RA, Sousa RP, Cadete VJ, Lopaschuk GD, Palmeira CM, Bjork JA, Wallace KB (2010) Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology 270:92–98

    Article  PubMed  CAS  Google Scholar 

  34. Lewandowski ED, Yu X, LaNoue KF, White LT, Doumen C, O’Donnell JM (1997) Altered metabolite exchange between subcellular compartments in intact postischemic rabbit hearts. Circ Res 81:165–175

    PubMed  CAS  Google Scholar 

  35. Mlynárik V, Gambarota G, Frenkel H, Gruetter R (2006) Localized short echo-time proton MR spectroscopy with full signal-intensity acquisition. Magn Reson Med 56:965–970

    Article  PubMed  Google Scholar 

  36. Yu X, White LT, Doumen C, Damico LA, LaNoue KF, Alpert NM, Lewandowski ED (1995) Kinetic analysis of dynamic 13C NMR spectra: metabolic flux, regulation, and compartmentation in hearts. Biophys J 69:2090–2102

    Article  PubMed  CAS  Google Scholar 

  37. Burgess SC, Carvalho RA, Merritt ME, Jones JG, Malloy CR, Sherry AD (2001) 13C isotopomer analysis of glutamate by J-resolved heteronuclear single quantum coherence spectroscopy. Anal Biochem 289:187–195

    Article  PubMed  CAS  Google Scholar 

  38. Carvalho RA, Zhao P, Wiegers CB, Jeffrey FM, Malloy CR, Sherry AD (2001) TCA cycle kinetics in the rat heart by analysis of 13C isotopomers using indirect 1H{13C}detection. Am J Physiol Heart Circ Physiol 281:H1413–H1421

    PubMed  CAS  Google Scholar 

  39. Happer W (1972) Optical-pumping. Rev Mod Phys 44:169–249

    Article  CAS  Google Scholar 

  40. Golman K, Axelsson O, Johannesson H, Mansson S, Olofsson C, Petersson JS (2001) Parahydrogen-induced polarization in imaging: subsecond 13C angiography. Magn Reson Med 46:1–5

    Article  PubMed  CAS  Google Scholar 

  41. Haake M, Natterer J, Bargon J (1996) Efficient NMR pulse sequences to transfer the parahydrogen-induced polarization to hetero nuclei. J Am Chem Soc 118:8688–8691

    Article  CAS  Google Scholar 

  42. Abragam A, Goldman M (1978) Principles of dynamic nuclear-polarization. Rep Prog Phys 41:395–467

    Article  CAS  Google Scholar 

  43. Wolber J, Ellner F, Fridlund B, Gram A, Johannesson H, Hansson G, Hansson LH, Lerche MH, Mansson S, Servin R et al (2004) Generating highly polarized nuclear spins in solution using dynamic nuclear polarization. Nuc Inst Methods Phys Res A 526:173–181

    Article  CAS  Google Scholar 

  44. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163

    Article  PubMed  CAS  Google Scholar 

  45. Aime S, Dastru W, Gobetto R, Santelia D, Viale A (2008) Agents for polarization enhancement in MRI. Handb Exp Pharmacol 185(pt 1):247–272

    Article  PubMed  CAS  Google Scholar 

  46. Merritt ME, Harrison C, Storey C, Jeffrey FM, Sherry AD, Malloy CR (2007) Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc Natl Acad Sci USA 104:19773–19777

    Article  PubMed  CAS  Google Scholar 

  47. Merritt ME, Harrison C, Storey C, Sherry AD, Malloy CR (2008) Inhibition of carbohydrate oxidation during the first minute of reperfusion after brief ischemia: NMR detection of hyperpolarized 13CO2 and H13CO3. Magn Reson Med 60:1029–1036

    Article  PubMed  CAS  Google Scholar 

  48. Schroeder MA, Atherton HJ, Ball DR, Cole MA, Heather LC, Griffin JL, Clarke K, Radda GK, Tyler DJ (2009) Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J 23:2529–2538

    Article  PubMed  CAS  Google Scholar 

  49. Jensen PR, Peitersen T, Karlsson M, In’t Zandt R, Gisselsson A, Hansson G, Meier S, Lerche MH (2009) Tissue-specific short chain fatty acid metabolism and slow metabolic recovery after ischemia from hyperpolarized NMR in vivo. J Biol Chem 284:36077–36082

    Article  PubMed  CAS  Google Scholar 

  50. Tkác I, Oz G, Adriany G, Uğurbil K, Gruetter R (2009) In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn Reson Med 62:868–879

    Article  PubMed  Google Scholar 

  51. Sailasuta N, Robertson LW, Harris KC, Gropman AL, Allen PS, Ross BD (2008) Clinical NOE 13C MRS for neuropsychiatric disorders of the frontal lobe. J Magn Reson 195:219–225

    Article  PubMed  CAS  Google Scholar 

  52. Henry PG, Adriany G, Deelchand D, Gruetter R, Marjanska M, Oz G, Seaquist ER, Shestov A, Uğurbil K (2006) In vivo 13C NMR spectroscopy and metabolic modeling in the brain: a practical perspective. Magn Reson Imaging 24:527–539

    Article  PubMed  CAS  Google Scholar 

  53. Tkáč I, Gruetter R (2005) Methodology of H NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson 29:139–157

    Article  PubMed  Google Scholar 

  54. Gruetter R, Tkáč I (2000) Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 43:319–323

    Article  PubMed  CAS  Google Scholar 

  55. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  56. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2001) Crame´r-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14:278–283

    Article  PubMed  CAS  Google Scholar 

  57. Golman K, Ardenkjaer-Larsen JH, Petersson JS, Mansson S, Leunbach I (2003) Molecular imaging with endogeneous substrates. Proc Natl Acad Sci USA 100:10435–10439

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui A. Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alves, T.C., Jarak, I., Carvalho, R.A. (2012). NMR Methodologies for Studying Mitochondrial Bioenergetics. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 810. Humana Press. https://doi.org/10.1007/978-1-61779-382-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-382-0_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-381-3

  • Online ISBN: 978-1-61779-382-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics