Skip to main content

Redox Equivalents and Mitochondrial Bioenergetics

  • Protocol
  • First Online:
Mitochondrial Bioenergetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 810))

Abstract

Mitochondrial energy metabolism depends upon high-flux and low-flux electron transfer pathways. The former provide the energy to support chemiosmotic coupling for oxidative phosphorylation. The latter provide mechanisms for signaling and control of mitochondrial functions. Few practical methods are available to measure rates of individual mitochondrial electron transfer reactions; however, a number of approaches are available to measure steady-state redox potentials (E h) of donor/acceptor couples, and these can be used to gain insight into rate-controlling reactions as well as mitochondrial bioenergetics. Redox changes within the respiratory electron transfer pathway are quantified by optical spectroscopy and measurement of changes in autofluorescence. Low-flux pathways involving thiol/disulfide redox couples are measured by redox western blot and mass spectrometry-based redox proteomics. Together, the approaches provide the opportunity to develop integrated systems biology descriptions of mitochondrial redox signaling and control mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell P (1979) Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 206:1148–1159

    Article  PubMed  CAS  Google Scholar 

  2. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  3. Meredith MJ, Reed DJ (1982) Status of the mitochondrial pool of glutathione in the isolated hepatocyte. J Biol Chem 257:3747–3753

    PubMed  CAS  Google Scholar 

  4. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  5. Jones DP (2006) Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact 163:38–53

    Article  PubMed  CAS  Google Scholar 

  6. Chance B (1957) Cellular oxygen requirements. Fed Proc 16:671–680

    PubMed  CAS  Google Scholar 

  7. Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, Murphy MP (2003) Reversible ­glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278:19603–19610

    Article  PubMed  CAS  Google Scholar 

  8. Zhang R, Al-Lamki R, Bai L et al (2004) Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res 94:1483–1491

    Article  PubMed  CAS  Google Scholar 

  9. Lillig CH, Berndt C, Vergnolle O et al (2005) Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc Natl Acad Sci USA 102:8168–8173

    Article  PubMed  CAS  Google Scholar 

  10. Go YM, Pohl J, Jones DP (2009) Quantification of redox conditions in the nucleus. Methods Mol Biol 464:303–317

    Article  PubMed  Google Scholar 

  11. Jones DP (1984) Effect of mitochondrial clustering on O2 supply in hepatocytes. Am J Physiol 247:C83–C89

    PubMed  CAS  Google Scholar 

  12. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  PubMed  CAS  Google Scholar 

  13. Chance B (1954) Spectrophotometry of intracellular respiratory pigments. Science 120:767–775

    Article  PubMed  CAS  Google Scholar 

  14. Keilin D (1966) The history of cell respiration and cytochrome. Cambridge University Press, Cambridge

    Google Scholar 

  15. Chance B (1952) Spectra and reaction kinetics of respiratory pigments of homogenized and intact cells. Nature 169:215–221

    Article  PubMed  CAS  Google Scholar 

  16. Jones DP, Thor H, Andersson B, Orrenius S (1978) Detoxification reactions in isolated hepatocytes. Role of glutathione peroxidase, catalase, and formaldehyde dehydrogenase in reactions relating to N-demethylation by the cytochrome P-450 system. J Biol Chem 253:6031–6037

    PubMed  CAS  Google Scholar 

  17. Tamura M, Hazeki O, Nioka S, Chance B (1989) In vivo study of tissue oxygen metabolism using optical and nuclear magnetic resonance spectroscopies. Annu Rev Physiol 51:813–834

    Article  PubMed  CAS  Google Scholar 

  18. Jones DP (1981) Determination of pyridine dinucleotides in cell extracts by high-performance liquid chromatography. J Chromatogr 225:446–449

    Article  PubMed  CAS  Google Scholar 

  19. Williamson JR, Corkey BE (1969) Assays of intermediates of the citric acid cycle and related components by fluorometric enzyme methods. Methods Enzymol 13:434–513

    Article  CAS  Google Scholar 

  20. Sies H (1982) Nicotinamide nucleotide compartmentation. In: Sies H (ed) Metabolic compartmentation. Academic, London, pp 205–231

    Google Scholar 

  21. Kirwan GM, Coffey VG, Niere JO, Hawley JA, Adams MJ (2009) Spectroscopic correlation analysis of NMR-based metabonomics in exercise science. Anal Chim Acta 652:173–179

    Article  PubMed  CAS  Google Scholar 

  22. Beylot M, Beaufrère B, Normand S, Riou JP, Cohen R, Momex R (1986) Determination of human ketone body kinetics using stable-isotope labelled tracers. Diabetologia 29:90–96

    Article  PubMed  CAS  Google Scholar 

  23. Jones DP, Kennedy FG (1982) Intracellular oxygen supply during hypoxia. Am J Physiol 243:C247–C253

    PubMed  CAS  Google Scholar 

  24. Chance B, Schoener B (1962) Correlation of oxidation-reduction changes of intracellular reduced pyridine nucleotide and changes in electroencephalogram of the rat in anoxia. Nature 195:956–958

    Article  PubMed  CAS  Google Scholar 

  25. Chance B, Cohen P, Jobsis F, Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137:499–508

    Article  PubMed  CAS  Google Scholar 

  26. Song Y, Buettner GR (2010) Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic Biol Med 49(6):919–962

    Article  PubMed  CAS  Google Scholar 

  27. Yamamoto Y, Yamashita S (2002) Ubiquinol/ubiquinone ratio as a marker of oxidative stress. Methods Mol Biol 186:241–246

    PubMed  CAS  Google Scholar 

  28. Matsubara M, Ranji M, Leshnower BG et al (2010) In vivo fluorometric assessment of cyclosporine on mitochondrial function during myocardial ischemia and reperfusion. Ann Thorac Surg 89:1532–1537

    Article  PubMed  Google Scholar 

  29. Scholz R, Thurman RG, Williamson JR, Chance B, Bucher T (1969) Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem 244:2317–2324

    PubMed  CAS  Google Scholar 

  30. Tamura M, Oshino N, Chance B, Silver IA (1978) Optical measurements of intracellular oxygen concentration of rat heart in vitro. Arch Biochem Biophys 191:8–22

    Article  PubMed  CAS  Google Scholar 

  31. Estabrook RW (1961) Studies of oxidative phosphorylation with potassium ferricyanide as electron acceptor. J Biol Chem 236:3051–3057

    PubMed  CAS  Google Scholar 

  32. Jones DP, Orrenius S, Mason HS (1979) Hemoprotein quantitation in isolated hepatocytes. Biochim Biophys Acta 576:17–29

    PubMed  CAS  Google Scholar 

  33. Aw TY, Andersson BS, Jones DP (1987) Suppression of mitochondrial respiratory function after short-term anoxia. Am J Physiol 252:C362–C368

    PubMed  CAS  Google Scholar 

  34. Jones DP (1982) Intracellular catalase function: analysis of the catalytic activity by product formation in isolated liver cells. Arch Biochem Biophys 214:806–814

    Article  PubMed  CAS  Google Scholar 

  35. Guidot DM, Repine JE, Kitlowski AD et al (1995) Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism. J Clin Invest 96:1131–1136

    Article  PubMed  CAS  Google Scholar 

  36. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    Article  PubMed  CAS  Google Scholar 

  37. Sies H, Jones DP (2007) Oxidative stress. In: Fink G (ed) Encyclopedia of stress, 2nd edn. Elsevier, New York, pp 45–48

    Chapter  Google Scholar 

  38. Zhang H, Go YM, Jones DP (2007) Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. Arch Biochem Biophys 465:119–126

    Article  PubMed  CAS  Google Scholar 

  39. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:C849–C868

    Article  PubMed  CAS  Google Scholar 

  40. Halvey PJ, Watson WH, Hansen JM, Go YM, Samali A, Jones DP (2005) Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochem J 386:215–219

    Article  PubMed  CAS  Google Scholar 

  41. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  PubMed  CAS  Google Scholar 

  42. Cox AG, Winterbourn CC, Hampton MB (2010) Measuring the redox state of cellular peroxiredoxins by immunoblotting. Methods Enzymol 474:51–66

    Article  PubMed  CAS  Google Scholar 

  43. Padgett CM, Whorton AR (1995) S-nitrosoglutathione reversibly inhibits GAPDH by S-nitrosylation. Am J Physiol 269:C739–C749

    PubMed  CAS  Google Scholar 

  44. Stadtman TC (2002) Discoveries of vitamin B12 and selenium enzymes. Annu Rev Biochem 71:1–16

    Article  PubMed  CAS  Google Scholar 

  45. Gasdaska PY, Gasdaska JR, Cochran S, Powis G (1995) Cloning and sequencing of a human thioredoxin reductase. FEBS Lett 373:5–9

    Article  PubMed  CAS  Google Scholar 

  46. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346(Pt 1):1–8

    Article  PubMed  CAS  Google Scholar 

  47. Soini Y, Kahlos K, Napankangas U et al (2001) Widespread expression of thioredoxin and thioredoxin reductase in non-small cell lung carcinoma. Clin Cancer Res 7:1750–1757

    PubMed  CAS  Google Scholar 

  48. Kim JR, Lee SM, Cho SH et al (2004) Oxidation of thioredoxin reductase in HeLa cells stimulated with tumor necrosis factor-alpha. FEBS Lett 567:189–196

    Article  PubMed  CAS  Google Scholar 

  49. Go YM, Park H, Koval M et al (2010) A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radic Biol Med 48:275–283

    Article  PubMed  CAS  Google Scholar 

  50. Holmgren A, Fagerstedt M (1982) The in vivo distribution of oxidized and reduced thioredoxin in Escherichia coli. J Biol Chem 257:6926–6930

    PubMed  CAS  Google Scholar 

  51. Roede JR, Jones DP (2010) Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environ Mol Mutagen 51:380–390

    PubMed  CAS  Google Scholar 

  52. Requejo R, Chouchani ET, Hurd TR, Menger KE, Hampton MB, Murphy MP (2010) Measuring mitochondrial protein thiol redox state. Methods Enzymol 474:123–147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH grants ES009047, ES011195, and ES012870.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean P. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Roede, J.R., Go, YM., Jones, D.P. (2012). Redox Equivalents and Mitochondrial Bioenergetics. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 810. Humana Press. https://doi.org/10.1007/978-1-61779-382-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-382-0_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-381-3

  • Online ISBN: 978-1-61779-382-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics