Skip to main content

Update on Pure Translation Display with Unnatural Amino Acid Incorporation

  • Protocol
  • First Online:
Ribosome Display and Related Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 805))

Abstract

The identification of peptide and protein ligands by directed evolution in vitro has been of enormous utility in molecular biology and biotechnology. However, the translation step in almost all polypeptide selection methods is performed in vivo or in crude extracts, restricting applications. These restrictions include a limited library size due to transformation efficiency, unwanted competing reactions in translation, and an inability to incorporate multiple unnatural amino acids (AAs) with high fidelity and efficiency. These restrictions can be addressed by “pure translation display” where the translation step is performed in a purified system. To date, all pure translation display selections have coupled genotype to phenotype in a ribosome display format, though other formats also should be practical. Here, we detail the original, proof-of-principle, pure-translation-display method because this version should be the most suitable for encoding multiple unnatural AAs per peptide product toward the goal of “peptidomimetic evolution.” Challenges and progress toward this ultimate goal are discussed and are mainly associated with improving the efficiency of ribosomal polymerization of multiple unnatural AAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith GP, Petrenko VA. (1997) Phage Display. Chem. Rev. 97, 391–410.

    Google Scholar 

  2. Mattheakis LC, Bhatt RR, Dower WJ. (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. PNAS 91, 9022–9026.

    Google Scholar 

  3. Hanes J, Pluckthun A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. PNAS 94, 4937–4942.

    Google Scholar 

  4. Schaffitzel C, Zahnd C, Amstutz P, Luginbühl B, Plückthun A. (2005) In vitro selection and evolution of protein-ligand interactions by ribosome display. In Golemis E, Adams P, eds : Protein-protein interaction: A molecular cloning manual 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 517–548.

    Google Scholar 

  5. Lipovsek D, Pluckthun A. (2004) In-vitro protein evolution by ribosome display and mRNA display. Journal of Immunological Methods 290, 51–67.

    Google Scholar 

  6. Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H. (1997) In vitro virus: Bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414, 405–408.

    Google Scholar 

  7. Roberts RW, Szostak JW. (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. PNAS 94, 12297–12302.

    Google Scholar 

  8. Takahashi TT, Roberts RW. (2009) In Vitro Selection of Protein and Peptide Libraries Using mRNA Display. In Mayer, G., ed.: Nucleic Acid and peptide Aptamers: Methods and Protocols 1st edn. 535. pp 293–314.

    Google Scholar 

  9. Forster AC, Weissbach H, Blacklow SC. (2001) A Simplified Reconstitution of mRNA-Directed Peptide Synthesis: Activity of the Epsilon Enhancer and an Unnatural Amino Acid. Analytical Biochemistry 297, 60–70.

    Google Scholar 

  10. Forster AC, Tan Z, Nalam MNL, Lin H, Qu H, Cornish VW, Blacklow SC. (2003) Programming peptidomimetic syntheses by translating genetic codes designed de novo. PNAS 100, 6353–6357.

    Google Scholar 

  11. Li S, Millward S, Roberts R. (2002) In Vitro Selection of mRNA Display Libraries Containing an Unnatural Amino Acid. JACS 124, 9972–9973.

    Google Scholar 

  12. Frankel A, Millward SW, Roberts RW. (2003) Encodamers: Unnatural Peptide Oligomers Encoded in RNA. Chemistry and Biology 10, 1043–1050.

    Google Scholar 

  13. Forster AC, Cornish VW, Blacklow SC. (2004) Pure Translation Display. Analytical Biochemistry 333, 358–364.

    Google Scholar 

  14. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T. (2001) Cell-free translation reconstituted with purified components. Nature Biotechnology 19, 751–755.

    Google Scholar 

  15. Jewett MC, Forster AC. (2010) Update on designing and building minimal cells. Curr. Op. Biotech. 21, 697–703.

    Google Scholar 

  16. Villemagne D, Jackson R, Douthwaite JA. (2006) Highly efficient ribosome display selection by use of purified components for in vitro translation. Journal of Immunological Methods 313, 140–148.

    Google Scholar 

  17. Ohashi H, Shimizu Y, Ying BW, Ueda T. (2007) Efficient protein selection based on ribosome display system with purified components. Biochemical and Biophysical Research Communications 352, 270–276.

    Google Scholar 

  18. Osada E, Shimizu Y, Akbar BK, Kanamori T, Ueda T. (2009) Epitope Mapping Using Ribosome Display in a Reconstituted Cell-Free Protein Synthesis System. Journal of Biochemistry 145, 693–700.

    Google Scholar 

  19. Yanagida H, Matsuura T, Yomo T. (2007) Compensatory Evolution of a WW Domain Variant Lacking the Strictly Conserved Trp Residue. Journal of Molecular Evolution 66, 61–71.

    Google Scholar 

  20. Tan Z, Blacklow SC, Cornish VW, Forster AC. (2005) De novo genetic codes and pure translation display. Methods 36, 279–290.

    Google Scholar 

  21. Robertson SA, Ellman JA, Schultz PG. (1991) A General and Efficient Route for Chemical Aminoacylation of Transfer RNAs. JACS 113, 2722–2729.

    Google Scholar 

  22. Murakami H, Ohta A, Ashigai H, Suga H. (2006) A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nature Methods 3, 357–359.

    Google Scholar 

  23. Merryman C, Green R. (2004) Transformation of Aminoacyl tRNAs for the In Vitro Selection of “Drug-like” Molecules. Chemistry and Biology 11, 575–582.

    Google Scholar 

  24. Hartman MCT, Josephson K, Szostak JW. (2006) Enzymatic aminoacylation of tRNA with unnatural amino acids. PNAS 103, 4356–4361.

    Google Scholar 

  25. Hartman MCT, Josephson K, Lin CW, Szostak JW. (2007) An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides. PLoS ONE 2, e972.

    Google Scholar 

  26. Minajigi A, Francklyn CS. (2010) Aminoacyl Transfer Rate Dictates Choice of Editing Pathway in Threonyl-tRNA Synthetase. Journal of Biological Chemistry 285, 23810–23817.

    Google Scholar 

  27. Josephson K, Hartman MCT, Szostak JW. (2005) Ribosomal Synthesis of Unnatural Peptides. JACS 127, 11727–11735.

    Google Scholar 

  28. Forster AC. (2009) Low modularity of aminoacyl-tRNA substrates in polymerization by the ribosome. Nucleic Acids Research 37, 3747–3755.

    Google Scholar 

  29. Kawakami T, Murakami H, Suga H. (2008) Ribosomal Synthesis of Polypeptoids and Peptoid-Peptide Hybrids. JACS 130, 16861–16863.

    Google Scholar 

  30. Kawakami T, Murakami H, Suga H. (2008) Messenger RNA-Programmed Incorporation of Multiple N-Methyl-Amino Acids into Linear and Cyclic Peptides. Chemistry and Biology 15, 32–42.

    Google Scholar 

  31. Ohta A, Murakami H, Higashimura E, Suga H. (2007) Synthesis of Polyester by Means of Genetic Code Reprogramming. Chemistry and Biology 14, 1315–1322.

    Google Scholar 

  32. Merryman C, Weinstein E, Wnuk SF, Bartel DP. (2002) A Bifunctional tRNA for In Vitro Selection. Chemistry and Biology 9, 741–746.

    Google Scholar 

  33. Griffiths AD, Tawfik DS. (2006) Miniaturising the laboratory in emulsion droplets. Trends in Biotechnology 24, 395–402.

    Google Scholar 

  34. Hwang YW, Sanchez A, Hwang MCC, Miller DL. (1997) The Role of Cysteinyl Residues in the Activity of Bacterial Elongation Factor Ts, a Guanosine Nucleotide Dissociation Protein. Arch. Biochem. Biophys. 348, 157–162.

    Google Scholar 

  35. Semenkov YP, Rodnina MV, Wintermeyer W. (1996) The “allosteric three-site model” of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli. PNAS 93, 12183–12188.

    Google Scholar 

  36. Gao R, Forster AC. (2010) Changeability of individual domains of an aminoacyl-tRNA in polymerization by the ribosome. FEBS Letters 584, 99–105.

    Google Scholar 

  37. Pavlov MY, Watts RE, Tan Z, Cornish VW, Ehrenberg M, Forster AC. (2008) Slow peptide bond formation by proline and other N-alkylamino acids in translation. PNAS 106, 50–54.

    Google Scholar 

  38. Zhang B, Tan Z, Dickson LG, Nalam MNL, Cornish VW, Forster AC. (2007) Specifity of Translation for N-Alkyl Amino Acids. JACS 129, 11316–11317.

    Google Scholar 

  39. Watts RE, Forster AC. (2010) Chemical Models of Peptide Formation in Translation. Biochemistry 49, 2177–2185.

    Google Scholar 

  40. Bieling P, Beringer M, Adio S, Rodnina MV. (2006) Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nature Structural and Molecular Biology 13, 423–428.

    Google Scholar 

  41. Ederth J, Mandava CS, Dasgupta S, Sanyal S. (2009) A single-step method for purification of active His-tagged ribosomes from a genetically engineered Escherichia coli. Nucleic Acids Research 37, e15.

    Google Scholar 

  42. Zavialov AV, Buckingham RH, Ehrenberg M. (2001) A Posttermination Ribosomal Complex Is the Guanine Nucleotide Exchange Factor for Peptide Release Factor RF3. Cell 107, 115–124.

    Google Scholar 

  43. Cochella L, Green R. (2004) Isolation of antibiotic resistance mutations in the rRNA by using an in vitro selection system. PNAS 101, 3786–3791.

    Google Scholar 

  44. Subtelny AO, Hartman MCT, Szostak JW. (2008) Ribosomal Synthesis of N-Methyl Peptides. JACS 130, 6131–6136.

    Google Scholar 

Download references

Acknowledgments

We thank Tarjani Thaker for help with Fig. 2, and Craig Goodwin, Seth Villarreal, and the editors for comments on the manuscript. This work was supported by the National Institutes of Health and the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Forster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Watts, R.E., Forster, A.C. (2012). Update on Pure Translation Display with Unnatural Amino Acid Incorporation. In: Douthwaite, J., Jackson, R. (eds) Ribosome Display and Related Technologies. Methods in Molecular Biology, vol 805. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-379-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-379-0_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-378-3

  • Online ISBN: 978-1-61779-379-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics