Skip to main content

Preparation and Testing of E. coli S30 In Vitro Transcription Translation Extracts

  • Protocol
  • First Online:
Ribosome Display and Related Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 805))

Abstract

Crude cell-free extracts are useful tools for investigating biochemical phenomena and exploiting complex enzymatic processes such as protein synthesis. Extracts derived from E. coli have been used for over 50 years to study the mechanism of protein synthesis. In addition, these S30 extracts are commonly used as a laboratory tool for protein production. The preparation of S30 extract has been streamlined over the years and now it is a relatively simple process. The procedure described here includes some suggestions for extracts to be used for ribosome display.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bremer H, Dennis PP (1996) Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. pp 1553–1569, ASM Press, Washington, D.C.

    Google Scholar 

  2. Kim RG, Choi CY (2000) Expression-independent consumption of substrates in cell-free expression system from Escherichia coli. J Biotechnol 84, 27–32.

    Article  CAS  Google Scholar 

  3. Liu DV, Zawada JF, Swartz JR (2005) Streamlining Escherichia coli S30 extract preparation for economical cell-free protein synthesis. Biotechnol Prog 21, 460–465.

    Article  PubMed  CAS  Google Scholar 

  4. Hanes J, Jermutus L, Plückthun A (2000) Selecting and evolving functional proteins in vitro by ribosome display. Methods Enzymol 328, 404–430.

    Article  PubMed  CAS  Google Scholar 

  5. Jewett MC, Swartz JR (2004) Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 86, 19–26.

    Article  PubMed  CAS  Google Scholar 

  6. Kim DM, Swartz JR (2004) Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli. Biotechnol Bioeng 85, 122–129.

    Article  PubMed  CAS  Google Scholar 

  7. Knapp KG, Goerke AR, Swartz JR (2007) Cell-free synthesis of proteins that require disulfide bonds using glucose as an energy source. Biotechnol Bioeng 97, 901–908.

    Article  PubMed  CAS  Google Scholar 

  8. Oh IS, Kim DM, Kim TW, et al (2006) Providing an Oxidizing Environment for the Cell-Free Expression of Disulfide-Containing Proteins by Exhausting the Reducing Activity of Escherichia coli S30 Extract. Biotechnol Prog 22, 1225–1228.

    Article  PubMed  CAS  Google Scholar 

  9. Shaw WV (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 43, 737–755.

    Article  PubMed  CAS  Google Scholar 

  10. Kim D, Swartz J (2001) Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis. Biotechnol Bioeng 74, 309–316.

    Article  PubMed  CAS  Google Scholar 

  11. Zawada J, Swartz J (2006) Effects of growth rate on cell extract performance in cell-free protein synthesis. Biotechnol Bioeng 94, 618–624.

    Article  PubMed  CAS  Google Scholar 

  12. Kigawa T (2009) Cell-Free Protein Preparation Through Prokaryotic Transcription–Translation Methods. Methods Mol Biol 607, 1–10.

    Article  Google Scholar 

  13. He B, Rong M, Lyakhov D, et al (1997) Rapid Mutagenesis and Purification of Phage RNA Polymerases. Protein Expr Purif 9, 142–151.

    Article  PubMed  CAS  Google Scholar 

  14. Nevin DE, Pratt JM (1991) A coupled in vitro transcription-translation system for the exclusive synthesis of polypeptides expressed from the T7 promoter. FEBS Lett 291, 259–263.

    Article  PubMed  CAS  Google Scholar 

  15. Kim TW, Keum JW, Oh IS, et al (2006) Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J Biotechnol 126, 554–561.

    Article  PubMed  CAS  Google Scholar 

  16. Calhoun KA, Swartz JR (2007) Energy systems for ATP regeneration in cell-free protein synthesis reactions. Methods Mol Biol 375, 3–17.

    Article  PubMed  CAS  Google Scholar 

  17. Voloshin AM, Swartz JR (2005) Efficient and scalable method for scaling up cell free protein synthesis in batch mode. Biotechnol Bioeng 91, 516–521.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Zawada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zawada, J.F. (2012). Preparation and Testing of E. coli S30 In Vitro Transcription Translation Extracts. In: Douthwaite, J., Jackson, R. (eds) Ribosome Display and Related Technologies. Methods in Molecular Biology, vol 805. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-379-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-379-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-378-3

  • Online ISBN: 978-1-61779-379-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics