Skip to main content

Adeno-Associated Virus Biology

  • Protocol
  • First Online:
Adeno-Associated Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 807))

Abstract

Adeno-associated virus (AAV) was first discovered as a contaminant of adenovirus stocks in the 1960s. The development of recombinant AAV vectors (rAAV) was facilitated by early studies that generated infectious molecular clones, determined the sequence of the genome, and defined the genetic elements of the virus. The refinement of methods and protocols for the production and application of rAAV vectors has come from years of studies that explored the basic biology of this virus and its interaction with host cells. Interest in improving vector performance has in turn driven studies that have provided tremendous insights into the basic biology of the AAV lifecycle. In this chapter, we review the background on AAV biology and its exploitation for vectors and gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berns, K. I., and Giraud, C. (1996) Biology of adeno-associated virus, Curr Top Microbiol Immunol 218, 1–23.

    PubMed  CAS  Google Scholar 

  2. Kotin, R. M., Linden, R. M., and Berns, K. I. (1992) Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination, EMBO J 11, 5071–5078.

    PubMed  CAS  Google Scholar 

  3. Kotin, R. M., Siniscalco, M., Samulski, R. J., Zhu, X. D., Hunter, L., Laughlin, C. A., McLaughlin, S., Muzyczka, N., Rocchi, M., and Berns, K. I. (1990) Site-specific integration by adeno-associated virus, Proc Natl Acad Sci USA 87, 2211–2215.

    PubMed  CAS  Google Scholar 

  4. Linden, R. M., Winocour, E., and Berns, K. I. (1996) The recombination signals for adeno-associated virus site-specific integration, Proc Natl Acad Sci USA 93, 7966–7972.

    PubMed  CAS  Google Scholar 

  5. McCarty, D. M., Young, S. M., Jr., and Samulski, R. J. (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors, Annu Rev Genet 38, 819–845.

    PubMed  CAS  Google Scholar 

  6. Samulski, R. J., Zhu, X., Xiao, X., Brook, J. D., Housman, D. E., Epstein, N., and Hunter, L. A. (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19, EMBO J 10, 3941–3950.

    PubMed  CAS  Google Scholar 

  7. Qiu, J., and Pintel, D. (2008) Processing of adeno-associated virus RNA, Front Biosci 13, 3101–3115.

    PubMed  CAS  Google Scholar 

  8. Zolotukhin, S. (2005) Production of recombinant adeno-associated virus vectors, Hum Gene Ther 16, 551–557.

    PubMed  CAS  Google Scholar 

  9. Ghosh, A., and Duan, D. (2007) Expanding adeno-associated viral vector capacity: a tale of two vectors, Biotechnol Genet Eng Rev 24, 165–177.

    PubMed  CAS  Google Scholar 

  10. McCarty, D. M. (2008) Self-complementary AAV vectors; advances and applications, Mol Ther 16, 1648–1656.

    PubMed  CAS  Google Scholar 

  11. Duan, D., Yue, Y., Yan, Z., and Engelhardt, J. F. (2000) A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation, Nat Med 6, 595–598.

    PubMed  CAS  Google Scholar 

  12. Sun, L., Li, J., and Xiao, X. (2000) Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization, Nat Med 6, 599–602.

    PubMed  CAS  Google Scholar 

  13. Nakai, H., Storm, T. A., and Kay, M. A. (2000) Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors, Nat Biotechnol 18, 527–532.

    PubMed  CAS  Google Scholar 

  14. Duan, D., Yue, Y., and Engelhardt, J. F. (2001) Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison, Mol Ther 4, 383–391.

    PubMed  CAS  Google Scholar 

  15. Yan, Z., Zhang, Y., Duan, D., and Engelhardt, J. F. (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy, Proc Natl Acad Sci USA 97, 6716–6721.

    PubMed  CAS  Google Scholar 

  16. Lai, L., Lin, K., Foulks, G., Ma, L., Xiao, X., and Chen, K. (2005) Highly efficient ex vivo gene delivery into human corneal endothelial cells by recombinant adeno-associated virus, Curr Eye Res 30, 213–219.

    PubMed  CAS  Google Scholar 

  17. McCarty, D. M., Monahan, P. E., and Samulski, R. J. (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis, Gene Ther 8, 1248–1254.

    PubMed  CAS  Google Scholar 

  18. McCarty, D. M., Fu, H., Monahan, P. E., Toulson, C. E., Naik, P., and Samulski, R. J. (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo, Gene Ther 10, 2112–2118.

    PubMed  CAS  Google Scholar 

  19. Wang, Z., Ma, H. I., Li, J., Sun, L., Zhang, J., and Xiao, X. (2003) Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo, Gene Ther 10, 2105–2111.

    PubMed  CAS  Google Scholar 

  20. Wu, Z., Sun, J., Zhang, T., Yin, C., Yin, F., Van Dyke, T., Samulski, R. J., and Monahan, P. E. (2008) Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose, Mol Ther 16, 280–289.

    PubMed  Google Scholar 

  21. Girod, A., Wobus, C. E., Zadori, Z., Ried, M., Leike, K., Tijssen, P., Kleinschmidt, J. A., and Hallek, M. (2002) The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity, J Gen Virol 83, 973–978.

    PubMed  CAS  Google Scholar 

  22. Warrington, K. H., Jr., Gorbatyuk, O. S., Harrison, J. K., Opie, S. R., Zolotukhin, S., and Muzyczka, N. (2004) Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus, J Virol 78, 6595–6609.

    PubMed  CAS  Google Scholar 

  23. Xie, Q., Bu, W., Bhatia, S., Hare, J., Somasundaram, T., Azzi, A., and Chapman, M. S. (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy, Proc Natl Acad Sci USA 99, 10405–10410.

    PubMed  CAS  Google Scholar 

  24. Nam, H. J., Lane, M. D., Padron, E., Gurda, B., McKenna, R., Kohlbrenner, E., Aslanidi, G., Byrne, B., Muzyczka, N., Zolotukhin, S., and Agbandje-McKenna, M. (2007) Structure of adeno-associated virus serotype 8, a gene therapy vector, J Virol 81, 12260–12271.

    PubMed  CAS  Google Scholar 

  25. Walters, R. W., Agbandje-McKenna, M., Bowman, V. D., Moninger, T. O., Olson, N. H., Seiler, M., Chiorini, J. A., Baker, T. S., and Zabner, J. (2004) Structure of adeno-associated virus serotype 5, J Virol 78, 3361–3371.

    PubMed  CAS  Google Scholar 

  26. Padron, E., Bowman, V., Kaludov, N., Govindasamy, L., Levy, H., Nick, P., McKenna, R., Muzyczka, N., Chiorini, J. A., Baker, T. S., and Agbandje-McKenna, M. (2005) Structure of adeno-associated virus type 4, J Virol 79, 5047–5058.

    PubMed  CAS  Google Scholar 

  27. Gao, G., Vandenberghe, L. H., Alvira, M. R., Lu, Y., Calcedo, R., Zhou, X., and Wilson, J. M. (2004) Clades of Adeno-associated viruses are widely disseminated in human tissues, J Virol 78, 6381–6388.

    PubMed  CAS  Google Scholar 

  28. Gao, G. P., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J., and Wilson, J. M. (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy, Proc Natl Acad Sci USA 99, 11854–11859.

    PubMed  CAS  Google Scholar 

  29. Gao, G., Alvira, M. R., Somanathan, S., Lu, Y., Vandenberghe, L. H., Rux, J. J., Calcedo, R., Sanmiguel, J., Abbas, Z., and Wilson, J. M. (2003) Adeno-associated viruses undergo substantial evolution in primates during natural infections, Proc Natl Acad Sci USA 100, 6081–6086.

    PubMed  CAS  Google Scholar 

  30. Wu, Z., Asokan, A., and Samulski, R. J. (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy, Mol Ther 14, 316–327.

    PubMed  CAS  Google Scholar 

  31. Gao, G., Vandenberghe, L. H., and Wilson, J. M. (2005) New recombinant serotypes of AAV vectors, Curr Gene Ther 5, 285–297.

    PubMed  CAS  Google Scholar 

  32. Grimm, D., and Kay, M. A. (2003) From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy, Curr Gene Ther 3, 281–304.

    PubMed  CAS  Google Scholar 

  33. Rabinowitz, J. E., Rolling, F., Li, C., Conrath, H., Xiao, W., Xiao, X., and Samulski, R. J. (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity, J Virol 76, 791–801.

    PubMed  CAS  Google Scholar 

  34. Wu, Z., Asokan, A., Grieger, J. C., Govindasamy, L., Agbandje-McKenna, M., and Samulski, R. J. (2006) Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes, J Virol 80, 11393–11397.

    PubMed  CAS  Google Scholar 

  35. Wang, Z., Zhu, T., Qiao, C., Zhou, L., Wang, B., Zhang, J., Chen, C., Li, J., and Xiao, X. (2005) Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart, Nat Biotechnol 23, 321–328.

    PubMed  CAS  Google Scholar 

  36. Peden, C. S., Burger, C., Muzyczka, N., and Mandel, R. J. (2004) Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain, J Virol 78, 6344–6359.

    PubMed  CAS  Google Scholar 

  37. Vandenberghe, L. H., Wilson, J. M., and Gao, G. (2009) Tailoring the AAV vector capsid for gene therapy, Gene Ther 16, 311–319.

    PubMed  CAS  Google Scholar 

  38. Rabinowitz, J. E., Bowles, D. E., Faust, S. M., Ledford, J. G., Cunningham, S. E., and Samulski, R. J. (2004) Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups, J Virol 78, 4421–4432.

    PubMed  CAS  Google Scholar 

  39. Hauck, B., Chen, L., and Xiao, W. (2003) Generation and characterization of chimeric recombinant AAV vectors, Mol Ther 7, 419–425.

    PubMed  CAS  Google Scholar 

  40. Bowles, D. E., Rabinowitz, J. E., and Samulski, R. J. (2003) Marker rescue of adeno-associated virus (AAV) capsid mutants: a novel approach for chimeric AAV production, J Virol 77, 423–432.

    PubMed  CAS  Google Scholar 

  41. Perabo, L., Endell, J., King, S., Lux, K., Goldnau, D., Hallek, M., and Buning, H. (2006) Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus, J Gene Med 8, 155–162.

    PubMed  CAS  Google Scholar 

  42. Li, W., Asokan, A., Wu, Z., Van Dyke, T., DiPrimio, N., Johnson, J. S., Govindaswamy, L., Agbandje-McKenna, M., Leichtle, S., Redmond, D. E., Jr., McCown, T. J., Petermann, K. B., Sharpless, N. E., and Samulski, R. J. (2008) Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles, Mol Ther 16, 1252–1260.

    PubMed  CAS  Google Scholar 

  43. Maheshri, N., Koerber, J. T., Kaspar, B. K., and Schaffer, D. V. (2006) Directed evolution of adeno-associated virus yields enhanced gene delivery vectors, Nat Biotechnol 24, 198–204.

    PubMed  CAS  Google Scholar 

  44. Muzyczka, N., and Warrington, K. H., Jr. (2005) Custom adeno-associated virus capsids: the next generation of recombinant vectors with novel tropism, Hum Gene Ther 16, 408–416.

    PubMed  CAS  Google Scholar 

  45. Buning, H., Perabo, L., Coutelle, O., Quadt-Humme, S., and Hallek, M. (2008) Recent developments in adeno-associated virus vector technology, J Gene Med 10, 717–733.

    PubMed  Google Scholar 

  46. Blacklow, N. R., Hoggan, M. D., and Rowe, W. P. (1967) Isolation of adenovirus-associated viruses from man, Proc Natl Acad Sci USA 58, 1410–1415.

    PubMed  CAS  Google Scholar 

  47. Han, L., Parmley, T. H., Keith, S., Kozlowski, K. J., Smith, L. J., and Hermonat, P. L. (1996) High prevalence of adeno-associated virus (AAV) type 2 rep DNA in cervical materials: AAV may be sexually transmitted, Virus Genes 12, 47–52.

    PubMed  CAS  Google Scholar 

  48. Walz, C. M., Anisi, T. R., Schlehofer, J. R., Gissmann, L., Schneider, A., and Muller, M. (1998) Detection of infectious adeno-associated virus particles in human cervical biopsies, Virology 247, 97–105.

    PubMed  CAS  Google Scholar 

  49. Mayor, H. D., Drake, S., Stahmann, J., and Mumford, D. M. (1976) Antibodies to adeno-associated satellite virus and herpes simplex in sera from cancer patients and normal adults, Am J Obstet Gynecol 126, 100–104.

    PubMed  CAS  Google Scholar 

  50. Georg-Fries, B., Biederlack, S., Wolf, J., and zur Hausen, H. (1984) Analysis of proteins, helper dependence, and seroepidemiology of a new human parvovirus, Virology 134, 64–71.

    Google Scholar 

  51. Agorastos, T., Chrisafi, S., Lambropoulos, A. F., Mikos, T., Constandinides, T. C., Schlehofer, J. R., Schlehofer, B., Kotsis, A., and Bontis, J. N. (2008) Adeno-associated virus infection and cervical neoplasia: is there a protective role against human papillomavirus-related carcinogenesis?, Eur J Cancer Prev 17, 364–368.

    PubMed  CAS  Google Scholar 

  52. Carter, B. J. (2004) Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective, Mol Ther 10, 981–989.

    PubMed  CAS  Google Scholar 

  53. Wright, J. F. (2009) Transient transfection methods for clinical adeno-associated viral vector production, Hum Gene Ther 20, 698–706.

    PubMed  CAS  Google Scholar 

  54. Zhang, H., Xie, J., Xie, Q., Wilson, J. M., and Gao, G. (2009) Adenovirus-adeno-associated virus hybrid for large-scale recombinant adeno-associated virus production, Hum Gene Ther 20, 922–929.

    PubMed  CAS  Google Scholar 

  55. Clement, N., Knop, D. R., and Byrne, B. J. (2009) Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies, Hum Gene Ther 20, 796–806.

    PubMed  CAS  Google Scholar 

  56. Virag, T., Cecchini, S., and Kotin, R. M. (2009) Producing recombinant adeno-associated virus in foster cells: overcoming production limitations using a baculovirus-insect cell expression strategy, Hum Gene Ther 20, 807–817.

    PubMed  CAS  Google Scholar 

  57. Carter, B. J. (2005) Adeno-associated virus vectors in clinical trials, Hum Gene Ther 16, 541–550.

    PubMed  CAS  Google Scholar 

  58. Mueller, C., and Flotte, T. R. (2008) Clinical gene therapy using recombinant adeno-associated virus vectors, Gene Ther 15, 858–863.

    PubMed  CAS  Google Scholar 

  59. Ding, W., Zhang, L., Yan, Z., and Engelhardt, J. F. (2005) Intracellular trafficking of adeno-associated viral vectors, Gene Ther 12, 873–880.

    PubMed  CAS  Google Scholar 

  60. Srivastava, A. (2008) Adeno-associated virus-mediated gene transfer, J Cell Biochem 105, 17–24.

    PubMed  CAS  Google Scholar 

  61. Chen, C. L., Jensen, R. L., Schnepp, B. C., Connell, M. J., Shell, R., Sferra, T. J., Bartlett, J. S., Clark, K. R., and Johnson, P. R. (2005) Molecular characterization of adeno-associated viruses infecting children, J Virol 79, 14781–14792.

    PubMed  CAS  Google Scholar 

  62. Summerford, C., and Samulski, R. J. (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions, J Virol 72, 1438–1445.

    PubMed  CAS  Google Scholar 

  63. Kern, A., Schmidt, K., Leder, C., Muller, O. J., Wobus, C. E., Bettinger, K., Von der Lieth, C. W., King, J. A., and Kleinschmidt, J. A. (2003) Identification of a heparin-binding motif on adeno-associated virus type 2 capsids, J Virol 77, 11072–11081.

    PubMed  CAS  Google Scholar 

  64. Opie, S. R., Warrington, K. H., Jr., Agbandje-McKenna, M., Zolotukhin, S., and Muzyczka, N. (2003) Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding, J Virol 77, 6995–7006.

    PubMed  CAS  Google Scholar 

  65. Qing, K., Mah, C., Hansen, J., Zhou, S., Dwarki, V., and Srivastava, A. (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2, Nat Med 5, 71–77.

    PubMed  CAS  Google Scholar 

  66. Summerford, C., Bartlett, J. S., and Samulski, R. J. (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection, Nat Med 5, 78–82.

    PubMed  CAS  Google Scholar 

  67. Kaludov, N., Brown, K. E., Walters, R. W., Zabner, J., and Chiorini, J. A. (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity, J Virol 75, 6884–6893.

    PubMed  CAS  Google Scholar 

  68. Walters, R. W., Yi, S. M., Keshavjee, S., Brown, K. E., Welsh, M. J., Chiorini, J. A., and Zabner, J. (2001) Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer, J Biol Chem 276, 20610–20616.

    PubMed  CAS  Google Scholar 

  69. Di Pasquale, G., Davidson, B. L., Stein, C. S., Martins, I., Scudiero, D., Monks, A., and Chiorini, J. A. (2003) Identification of PDGFR as a receptor for AAV-5 transduction, Nat Med 9, 1306–1312.

    PubMed  Google Scholar 

  70. Bartlett, J. S., Wilcher, R., and Samulski, R. J. (2000) Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors, J Virol 74, 2777–2785.

    PubMed  CAS  Google Scholar 

  71. Grieger, J. C., Snowdy, S., and Samulski, R. J. (2006) Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly, J Virol 80, 5199–5210.

    PubMed  CAS  Google Scholar 

  72. Johnson, J. S., and Samulski, R. J. (2009) Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus, J Virol 83, 2632–2644.

    PubMed  CAS  Google Scholar 

  73. Douar, A. M., Poulard, K., Stockholm, D., and Danos, O. (2001) Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation, J Virol 75, 1824–1833.

    PubMed  CAS  Google Scholar 

  74. Hansen, J., Qing, K., and Srivastava, A. (2001) Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts, J Virol 75, 4080–4090.

    PubMed  CAS  Google Scholar 

  75. Xiao, W., Warrington, K. H., Jr., Hearing, P., Hughes, J., and Muzyczka, N. (2002) Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2, J Virol 76, 11505–11517.

    PubMed  CAS  Google Scholar 

  76. Thomas, C. E., Storm, T. A., Huang, Z., and Kay, M. A. (2004) Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors, J Virol 78, 3110–3122.

    PubMed  CAS  Google Scholar 

  77. Chiorini, J. A. (2006) Looking down the rabbit hole: understanding the binding, entry, and trafficking patterns of AAV particles in the cell, in Parvoviruses (Jonathan R. Kerr, S. F. C., Marshall E. Bloom, R. Michael Linden, Colin R. Parrish, Ed.), pp 168–170, Hodder Arnold, London.

    Google Scholar 

  78. Pereira, D. J., McCarty, D. M., and Muzyczka, N. (1997) The adeno-associated virus (AAV) Rep protein acts as both a repressor and an activator to regulate AAV transcription during a productive infection, J Virol 71, 1079–1088.

    PubMed  CAS  Google Scholar 

  79. Berns, K. I., and Parrish, C. R. (2007) Parvoviridae, in Fields Virology (Knipe, D. M., and Howley, P. M., Eds.) 5th ed., pp 2437–2477, Lippincott Williams and Wilkins, Philadelphia, PA.

    Google Scholar 

  80. Ding, W., Yan, Z., Zak, R., Saavedra, M., Rodman, D. M., and Engelhardt, J. F. (2003) Second-strand genome conversion of adeno-associated virus type 2 (AAV-2) and AAV-5 is not rate limiting following apical infection of polarized human airway epithelia, J Virol 77, 7361–7366.

    PubMed  CAS  Google Scholar 

  81. Ferrari, F. K., Samulski, T., Shenk, T., and Samulski, R. J. (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors, J Virol 70, 3227–3234.

    PubMed  CAS  Google Scholar 

  82. Jayandharan, G. R., Zhong, L., Li, B., Kachniarz, B., and Srivastava, A. (2008) Strategies for improving the transduction efficiency of single-stranded adeno-associated virus vectors in vitro and in vivo, Gene Ther 15, 1287–1293.

    PubMed  CAS  Google Scholar 

  83. Qing, K., Wang, X. S., Kube, D. M., Ponnazhagan, S., Bajpai, A., and Srivastava, A. (1997) Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression, Proc Natl Acad Sci USA 94, 10879–10884.

    PubMed  CAS  Google Scholar 

  84. Zhong, L., Zhou, X., Li, Y., Qing, K., Xiao, X., Samulski, R. J., and Srivastava, A. (2008) Single-polarity recombinant adeno-associated virus 2 vector-mediated transgene expression in vitro and in vivo: mechanism of transduction, Mol Ther 16, 290–295.

    PubMed  CAS  Google Scholar 

  85. Labow, M. A., Hermonat, P. L., and Berns, K. I. (1986) Positive and negative autoregulation of the adeno-associated virus type 2 genome, J Virol 60, 251–258.

    PubMed  CAS  Google Scholar 

  86. Trempe, J. P., and Carter, B. J. (1988) Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation, J Virol 62, 68–74.

    PubMed  CAS  Google Scholar 

  87. Redemann, B. E., Mendelson, E., and Carter, B. J. (1989) Adeno-associated virus rep protein synthesis during productive infection, J Virol 63, 873–882.

    PubMed  CAS  Google Scholar 

  88. Kyostio, S. R., Owens, R. A., Weitzman, M. D., Antoni, B. A., Chejanovsky, N., and Carter, B. J. (1994) Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels, J Virol 68, 2947–2957.

    PubMed  CAS  Google Scholar 

  89. Tratschin, J. D., Miller, I. L., and Carter, B. J. (1984) Genetic analysis of adeno-associated virus: properties of deletion mutants constructed in vitro and evidence for an adeno-associated virus replication function, J Virol 51, 611–619.

    PubMed  CAS  Google Scholar 

  90. Nash, K., Chen, W., and Muzyczka, N. (2008) Complete in vitro reconstitution of adeno-associated virus DNA replication requires the minichromosome maintenance complex proteins, J Virol 82, 1458–1464.

    PubMed  CAS  Google Scholar 

  91. Ni, T. H., Zhou, X., McCarty, D. M., Zolotukhin, I., and Muzyczka, N. (1994) In vitro replication of adeno-associated virus DNA, J Virol 68, 1128–1138.

    PubMed  CAS  Google Scholar 

  92. Ward, P. (2006) Replication of adeno-associated virus DNA, in Parvoviruses (Jonathan R. Kerr, S. F. C., Marshall E. Bloom, R. Michael Linden, Colin R. Parrish, Ed.), pp 189–211, Hodder Arnold, London.

    Google Scholar 

  93. Ward, P., and Berns, K. I. (1996) In vitro replication of adeno-associated virus DNA: enhancement by extracts from adenovirus-infected HeLa cells, J Virol 70, 4495–4501.

    PubMed  CAS  Google Scholar 

  94. Senapathy, P., Tratschin, J. D., and Carter, B. J. (1984) Replication of adeno-associated virus DNA. Complementation of naturally occurring rep- mutants by a wild-type genome or an ori- mutant and correction of terminal palindrome deletions, J Mol Biol 179, 1–20.

    PubMed  CAS  Google Scholar 

  95. Nahreini, P., and Srivastava, A. (1989) Rescue and replication of the adeno-associated virus 2 genome in mortal and immortal human cells, Intervirology 30, 74–85.

    PubMed  CAS  Google Scholar 

  96. Ward, P., Falkenberg, M., Elias, P., Weitzman, M., and Linden, R. M. (2001) Rep-dependent initiation of adeno-associated virus type 2 DNA replication by a herpes simplex virus type 1 replication complex in a reconstituted system, J Virol 75, 10250–10258.

    PubMed  CAS  Google Scholar 

  97. Slanina, H., Weger, S., Stow, N. D., Kuhrs, A., and Heilbronn, R. (2006) Role of the herpes simplex virus helicase-primase complex during adeno-associated virus DNA replication, J Virol 80, 5241–5250.

    PubMed  CAS  Google Scholar 

  98. Owens, R. A., Weitzman, M. D., Kyostio, S. R., and Carter, B. J. (1993) Identification of a DNA-binding domain in the amino terminus of adeno-associated virus Rep proteins, J Virol 67, 997–1005.

    PubMed  CAS  Google Scholar 

  99. Brister, J. R., and Muzyczka, N. (2000) Mechanism of Rep-Mediated Adeno-Associated Virus Origin Nicking., J.Virology 74, 7762–7771.

    PubMed  CAS  Google Scholar 

  100. Shi, Y., Seto, E., Chang, L. S., and Shenk, T. (1991) Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein, Cell 67, 377–388.

    PubMed  CAS  Google Scholar 

  101. Chang, L. S., Shi, Y., and Shenk, T. (1989) Adeno-associated virus P5 promoter contains an adenovirus E1A-inducible element and a binding site for the major late transcription factor, J Virol 63, 3479–3488.

    PubMed  CAS  Google Scholar 

  102. Weitzman, M. D., Fisher, K. J., and Wilson, J. M. (1996) Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers, J Virol 70, 1845–1854.

    PubMed  CAS  Google Scholar 

  103. Ward, P., Dean, F. B., O’Donnell, M. E., and Berns, K. I. (1998) Role of the adenovirus DNA-binding protein in in vitro adeno-associated virus DNA replication, J Virol 72, 420–427.

    PubMed  CAS  Google Scholar 

  104. Samulski, R. J., and Shenk, T. (1988) Adenovirus E1B 55-Mr polypeptide facilitates timely cytoplasmic accumulation of adeno-associated virus mRNAs, J Virol 62, 206–210.

    PubMed  CAS  Google Scholar 

  105. Fisher, K. J., Gao, G. P., Weitzman, M. D., DeMatteo, R., Burda, J. F., and Wilson, J. M. (1996) Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis, J Virol 70, 520–532.

    PubMed  CAS  Google Scholar 

  106. Schwartz, R. A., Palacios, J. A., Cassell, G. D., Adam, S., Giacca, M., and Weitzman, M. D. (2007) The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication, J Virol 81, 12936–12945.

    PubMed  CAS  Google Scholar 

  107. Nayak, R., and Pintel, D. J. (2007) Adeno-associated viruses can induce phosphorylation of eIF2alpha via PKR activation, which can be overcome by helper adenovirus type 5 virus-associated RNA, J Virol 81, 11908–11916.

    PubMed  CAS  Google Scholar 

  108. Xiao, X., Li, J., and Samulski, R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus, J Virol 72, 2224–2232.

    PubMed  CAS  Google Scholar 

  109. Weindler, F. W., and Heilbronn, R. (1991) A subset of herpes simplex virus replication genes provides helper functions for productive adeno-associated virus replication, J Virol 65, 2476–2483.

    PubMed  CAS  Google Scholar 

  110. Stracker, T. H., Cassell, G. D., Ward, P., Loo, Y. M., van Breukelen, B., Carrington-Lawrence, S. D., Hamatake, R. K., van der Vliet, P. C., Weller, S. K., Melendy, T., and Weitzman, M. D. (2004) The Rep protein of adeno-associated virus type 2 interacts with single-stranded DNA-binding proteins that enhance viral replication, J Virol 78, 441–453.

    PubMed  CAS  Google Scholar 

  111. Geoffroy, M. C., Epstein, A. L., Toublanc, E., Moullier, P., and Salvetti, A. (2004) Herpes simplex virus type 1 ICP0 protein mediates activation of adeno-associated virus type 2 rep gene expression from a latent integrated form, J Virol 78, 10977–10986.

    PubMed  CAS  Google Scholar 

  112. Alazard-Dany, N., Nicolas, A., Ploquin, A., Strasser, R., Greco, A., Epstein, A. L., Fraefel, C., and Salvetti, A. (2009) Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events, PLoS Pathog 5, e1000340.

    PubMed  Google Scholar 

  113. Yalkinoglu, A. O., Heilbronn, R., Burkle, A., Schlehofer, J. R., and zur Hausen, H. (1988) DNA amplification of adeno-associated virus as a response to cellular genotoxic stress, Cancer Res 48, 3123–3129.

    Google Scholar 

  114. Meyers, C., Mane, M., Kokorina, N., Alam, S., and Hermonat, P. L. (2000) Ubiquitous human adeno-associated virus type 2 autonomously replicates in differentiating keratinocytes of a normal skin model, Virology 272, 338–346.

    PubMed  CAS  Google Scholar 

  115. Ward, P., Urcelay, E., Kotin, R., Safer, B., and Berns, K. I. (1994) Adeno-associated virus DNA replication in vitro: activation by a maltose binding protein/Rep 68 fusion protein, J Virol 68, 6029–6037.

    PubMed  CAS  Google Scholar 

  116. Ni, T. H., McDonald, W. F., Zolotukhin, I., Melendy, T., Waga, S., Stillman, B., and Muzyczka, N. (1998) Cellular proteins required for adeno-associated virus DNA replication in the absence of adenovirus coinfection, J Virol 72, 2777–2787.

    PubMed  CAS  Google Scholar 

  117. Nash, K., Chen, W., McDonald, W. F., Zhou, X., and Muzyczka, N. (2007) Purification of host cell enzymes involved in adeno-associated virus DNA replication, J Virol 81, 5777–5787.

    PubMed  CAS  Google Scholar 

  118. Nash, K., Chen, W., Salganik, M., and Muzyczka, N. (2009) Identification of cellular proteins that interact with the adeno-associated virus rep protein, J Virol 83, 454–469.

    PubMed  CAS  Google Scholar 

  119. Cassell, G. D., and Weitzman, M. D. (2004) Characterization of a nuclear localization signal in the C-terminus of the adeno-associated virus Rep68/78 proteins, Virology 327, 206–214.

    PubMed  CAS  Google Scholar 

  120. Pereira, D. J., and Muzyczka, N. (1997) The adeno-associated virus type 2 p40 promoter requires a proximal Sp1 interaction and a p19 CArG-like element to facilitate Rep transactivation, J Virol 71, 4300–4309.

    PubMed  CAS  Google Scholar 

  121. Costello, E., Saudan, P., Winocour, E., Pizer, L., and Beard, P. (1997) High mobility group chromosomal protein 1 binds to the adeno-associated virus replication protein (Rep) and promotes Rep-mediated site-specific cleavage of DNA, ATPase activity and transcriptional repression, EMBO J 16, 5943–5954.

    PubMed  CAS  Google Scholar 

  122. Di Pasquale, G., and Chiorini, J.A. (2003) PKA/PrKX activity is a modulator of AAV/adenovirus interaction., EMBO J 22, 1716–1724.

    PubMed  Google Scholar 

  123. Qing, K., Hansen, J., Weigel-Kelley, K. A., Tan, M., Zhou, S., and Srivastava, A. (2001) Adeno-associated virus type 2-mediated gene transfer: role of cellular FKBP52 protein in transgene expression, J Virol 75, 8968–8976.

    PubMed  CAS  Google Scholar 

  124. Cathomen, T., Stracker, T. H., Gilbert, L. B., and Weitzman, M. D. (2001) A genetic screen identifies a cellular regulator of adeno-associated virus, Proc Natl Acad Sci USA 98, 14991–14996.

    PubMed  CAS  Google Scholar 

  125. Chen, H., Lilley, C. E., Yu, Q., Lee, D. V., Chou, J., Narvaiza, I., Landau, N. R., and Weitzman, M. D. (2006) APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons, Curr Biol 16, 480–485.

    PubMed  CAS  Google Scholar 

  126. Konig, R., Zhou, Y., Elleder, D., Diamond, T. L., Bonamy, G. M., Irelan, J. T., Chiang, C. Y., Tu, B. P., De Jesus, P. D., Lilley, C. E., Seidel, S., Opaluch, A. M., Caldwell, J. S., Weitzman, M. D., Kuhen, K. L., Bandyopadhyay, S., Ideker, T., Orth, A. P., Miraglia, L. J., Bushman, F. D., Young, J. A., and Chanda, S. K. (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication, Cell 135, 49–60.

    PubMed  CAS  Google Scholar 

  127. Choi, V. W., McCarty, D. M., and Samulski, R. J. (2006) Host cell DNA repair pathways in adeno-associated viral genome processing, J Virol 80, 10346–10356.

    PubMed  CAS  Google Scholar 

  128. Zentilin, L., Marcello, A., and Giacca, M. (2001) Involvement of cellular double-stranded DNA break binding proteins in processing of the recombinant adeno-associated virus genome, J Virol 75, 12279–12287.

    PubMed  CAS  Google Scholar 

  129. Cervelli, T., Palacios, J. A., Zentilin, L., Mano, M., Schwartz, R. A., Weitzman, M. D., and Giacca, M. (2008) Processing of recombinant AAV genomes occurs in specific nuclear structures that overlap with foci of DNA-damage-response proteins, J Cell Sci 121, 349–357.

    PubMed  CAS  Google Scholar 

  130. Schwartz, R. A., Carson, C. T., Schuberth, C., and Weitzman, M. D. (2009) Adeno-associated virus replication induces a DNA damage response coordinated by DNA-dependent protein kinase, J Virol 83, 6269–6278.

    PubMed  CAS  Google Scholar 

  131. Wistuba, A., Kern, A., Weger, S., Grimm, D., and Kleinschmidt, J. A. (1997) Subcellular compartmentalization of adeno-associated virus type 2 assembly, J Virol 71, 1341–1352.

    PubMed  CAS  Google Scholar 

  132. Hunter, L. A., and Samulski, R. J. (1992) Colocalization of adeno-associated virus Rep and capsid proteins in the nuclei of infected cells, J Virol 66, 317–324.

    PubMed  CAS  Google Scholar 

  133. Yang, Q., Chen, F., and Trempe, J. P. (1994) Characterization of cell lines that inducibly express the adeno-associated virus Rep proteins, J Virol 68, 4847–4856.

    PubMed  CAS  Google Scholar 

  134. Kyostio, S. R., Wonderling, R. S., and Owens, R. A. (1995) Negative regulation of the adeno-associated virus (AAV) P5 promoter involves both the P5 rep binding site and the consensus ATP-binding motif of the AAV Rep68 protein, J Virol 69, 6787–6796.

    PubMed  CAS  Google Scholar 

  135. Lackner, D. F., and Muzyczka, N. (2002) Studies of the mechanism of transactivation of the adeno-associated virus p19 promoter by Rep protein, J Virol 76, 8225–8235.

    PubMed  CAS  Google Scholar 

  136. Pereira, D. J., and Muzyczka, N. (1997) The cellular transcription factor SP1 and an unknown cellular protein are required to mediate Rep protein activation of the adeno-associated virus p19 promoter, J Virol 71, 1747–1756.

    PubMed  CAS  Google Scholar 

  137. Haberman, R. P., McCown, T. J., and Samulski, R. J. (2000) Novel transcriptional regulatory signals in the adeno-associated virus terminal repeat A/D junction element, J Virol 74, 8732–8739.

    PubMed  CAS  Google Scholar 

  138. Flotte, T. R., Afione, S. A., Solow, R., Drumm, M. L., Markakis, D., Guggino, W. B., Zeitlin, P. L., and Carter, B. J. (1993) Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter, J Biol Chem 268, 3781–3790.

    PubMed  CAS  Google Scholar 

  139. Mouw, M. B., and Pintel, D. J. (2000) Adeno-associated virus RNAs appear in a temporal order and their splicing is stimulated during coinfection with adenovirus, J Virol 74, 9878–9888.

    PubMed  CAS  Google Scholar 

  140. Qiu, J., and Pintel, D. J. (2002) The adeno-associated virus type 2 Rep protein regulates RNA processing via interaction with the transcription template, Mol Cell Biol 22, 3639–3652.

    PubMed  CAS  Google Scholar 

  141. Hermonat, P. L., Labow, M. A., Wright, R., Berns, K. I., and Muzyczka, N. (1984) Genetics of adeno-associated virus: isolation and preliminary characterization of adeno-associated virus type 2 mutants, J Virol 51, 329–339.

    PubMed  CAS  Google Scholar 

  142. Holscher, C., Kleinschmidt, J. A., and Burkle, A. (1995) High-level expression of adeno-­associated virus (AAV) Rep78 or Rep68 protein is sufficient for infectious-particle formation by a rep-negative AAV mutant, J Virol 69, 6880–6885.

    PubMed  CAS  Google Scholar 

  143. Linden, R. M., Ward, P., Giraud, C., Winocour, E., and Berns, K. I. (1996) Site-specific integration by adeno-associated virus, Proc Natl Acad Sci USA 93, 11288–11294.

    PubMed  CAS  Google Scholar 

  144. Surosky, R. T., Urabe, M., Godwin, S. G., McQuiston, S. A., Kurtzman, G. J., Ozawa, K., and Natsoulis, G. (1997) Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome, J Virol 71, 7951–7959.

    PubMed  CAS  Google Scholar 

  145. Wang, X. S., Ponnazhagan, S., and Srivastava, A. (1995) Rescue and replication signals of the adeno-associated virus 2 genome, J Mol Biol 250, 573–580.

    PubMed  CAS  Google Scholar 

  146. Berns, K. I., and Linden, R. M. (1995) The cryptic life style of adeno-associated virus, Bioessays 17, 237–245.

    PubMed  CAS  Google Scholar 

  147. Hermonat, P. L. (1994) Down-regulation of the human c-fos and c-myc proto-oncogene promoters by adeno-associated virus Rep78, Cancer Lett 81, 129–136.

    PubMed  CAS  Google Scholar 

  148. Labow, M. A., Graf, L. H., Jr., and Berns, K. I. (1987) Adeno-associated virus gene expression inhibits cellular transformation by heterologous genes, Mol Cell Biol 7, 1320–1325.

    PubMed  CAS  Google Scholar 

  149. McCarty, D. M., Christensen, M., and Muzyczka, N. (1991) Sequences required for coordinate induction of adeno-associated virus p19 and p40 promoters by Rep protein, J Virol 65, 2936–2945.

    PubMed  CAS  Google Scholar 

  150. Chejanovsky, N., and Carter, B. J. (1989) Mutagenesis of an AUG codon in the adeno-associated virus rep gene: effects on viral DNA replication, Virology 173, 120–128.

    PubMed  CAS  Google Scholar 

  151. King, J. A., Dubielzig, R., Grimm, D., Kleinschmidt, J. A. (2001) DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids, EMBO J 20, 3282–3291.

    PubMed  CAS  Google Scholar 

  152. Hickman, A. B., Ronning, D. R., Kotin, R. M., and Dyda, F. (2002) Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep, Mol Cell 10, 327–337.

    PubMed  CAS  Google Scholar 

  153. Im, D. S., and Muzyczka, N. (1990) The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity., Cell 61, 447–457.

    PubMed  CAS  Google Scholar 

  154. James, J. A., Escalante, C.R., Yoon-Robarts, M., Edwards, T.A., Linden, R.M., and Aggarwal, A.K. (2003) Crystal Structure of the SF3 Helicase from Adeno-Associated Virus Type 2, Structure 11, 1025–1035.

    PubMed  CAS  Google Scholar 

  155. James, J. A., Aggarwal, A. K., Linden, R. M., and Escalante, C. R. (2004) Structure of adeno-associated virus type 2 Rep40-ADP complex: insight into nucleotide recognition and catalysis by superfamily 3 helicases, Proc Natl Acad Sci USA 101, 12455–12460.

    PubMed  CAS  Google Scholar 

  156. Mansilla-Soto, J., Yoon-Robarts, M., Rice, W. J., Arya, S., Escalante, C. R., and Linden, R. M. (2009) DNA structure modulates the oligomerization properties of the AAV initiator protein Rep68, PLoS Pathog 5, e1000513.

    PubMed  Google Scholar 

  157. Dutheil, N., and Linden, R. M. (2006) Site-specific integration by adeno-associated virus, in Parvoviruses (Jonathan R. Kerr, S. F. C., Marshall E. Bloom, R. Michael Linden, Colin R. Parrish, Ed.), pp 213–237, Hodder Arnold, London.

    Google Scholar 

  158. Kotin, R. M., and Berns, K. I. (1989) Organization of adeno-associated virus DNA in latently infected Detroit 6 cells, Virology 170, 460–467.

    PubMed  CAS  Google Scholar 

  159. Kotin, R. M., Menninger, J. C., Ward, D. C., and Berns, K. I. (1991) Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter, Genomics 10, 831–834.

    PubMed  CAS  Google Scholar 

  160. Walsh, C. E., Liu, J. M., Xiao, X., Young, N. S., Nienhuis, A. W., and Samulski, R. J. (1992) Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by an adeno-associated virus vector, Proc Natl Acad Sci USA 89, 7257–7261.

    PubMed  CAS  Google Scholar 

  161. Balague, C., Kalla, M., and Zhang, W. W. (1997) Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome, J Virol 71, 3299–3306.

    PubMed  CAS  Google Scholar 

  162. Urcelay, E., Ward, P. Wiener, M., Safer, B. and Kotin, R.M. (1995) Asymmetric replication in vitro from a human sequence element is dependent on adeno-associated virus Rep proteins., J.Virology 69, 2038–2046.

    PubMed  CAS  Google Scholar 

  163. Weitzman, M. D., Kyostio, S. R., Kotin, R. M., and Owens, R. A. (1994) Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA, Proc Natl Acad Sci USA 91, 5808–5812.

    PubMed  CAS  Google Scholar 

  164. Dutheil, N., Henckaerts, E., Kohlbrenner, E., and Linden, R. M. (2009) Transcriptional Analysis of the Adeno-Associated Virus Integration Site, J Virol.

    Google Scholar 

  165. Dutheil, N., Shi, F., Dupressoir, T., and Linden, R. M. (2000) Adeno-associated virus site-specifically integrates into a muscle-specific DNA region, Proc Natl Acad Sci USA 97, 4862–4866.

    PubMed  CAS  Google Scholar 

  166. Dutheil, N., Yoon-Robarts, M., Ward, P., Henckaerts, E., Skrabanek, L., Berns, K. I., Campagne, F., and Linden, R. M. (2004) Characterization of the mouse adeno-­associated virus AAVS1 ortholog, J Virol 78, 8917–8921.

    PubMed  CAS  Google Scholar 

  167. Henckaerts, E., Dutheil, N., Zeltner, N., Kattman, S., Kohlbrenner, E., Ward, P., Clement, N., Rebollo, P., Kennedy, M., Keller, G. M., and Linden, R. M. (2009) Site-specific integration of adeno-associated virus involves partial duplication of the target locus, Proc Natl Acad Sci USA 106, 7571–7576.

    PubMed  CAS  Google Scholar 

  168. Yang, L., Soonpaa, M. H., Adler, E. D., Roepke, T. K., Kattman, S. J., Kennedy, M., Henckaerts, E., Bonham, K., Abbott, G. W., Linden, R. M., Field, L. J., and Keller, G. M. (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population, Nature 453, 524–528.

    PubMed  CAS  Google Scholar 

  169. Wang, J., Xie, J., Lu, H., Chen, L., Hauck, B., Samulski, R. J., and Xiao, W. (2007) Existence of transient functional double-stranded DNA intermediates during recombinant AAV transduction, Proc Natl Acad Sci USA 104, 13104–13109.

    PubMed  CAS  Google Scholar 

  170. Schultz, B. R., and Chamberlain, J. S. (2008) Recombinant adeno-associated virus transduction and integration, Mol Ther 16, 1189–1199.

    PubMed  CAS  Google Scholar 

  171. Duan, D., Sharma, P., Yang, J., Yue, Y., Dudus, L., Zhang, Y., Fisher, K. J., and Engelhardt, J. F. (1998) Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue, J Virol 72, 8568–8577.

    PubMed  CAS  Google Scholar 

  172. Inagaki, K., Ma, C., Storm, T. A., Kay, M. A., and Nakai, H. (2007) The role of DNA-PKcs and artemis in opening viral DNA hairpin termini in various tissues in mice, J Virol 81, 11304–11321.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article is an overview of AAV basic biology and is not an exhaustive review of the topic. We apologize for primary work not covered here either from lack of space or inadvertent oversight. Work on AAV in the Weitzman laboratory has been supported by NIH grants (AI067952, CA097093, AI051686, and AI074967) and a Pioneer Developmental Chair from the Salk Institute. AAV work in the Linden laboratory was supported by NIH grants GM07390, 1GM071023, and GM075019, and by King’s College London School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Michael Linden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Weitzman, M.D., Linden, R.M. (2012). Adeno-Associated Virus Biology. In: Snyder, R., Moullier, P. (eds) Adeno-Associated Virus. Methods in Molecular Biology, vol 807. Humana Press. https://doi.org/10.1007/978-1-61779-370-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-370-7_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-369-1

  • Online ISBN: 978-1-61779-370-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics