Skip to main content

Conversion of Non-endocrine Human Pancreatic Cells to Insulin-Producing Cells for Treatment of Diabetes

  • Protocol
  • First Online:
Human Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 806))

Abstract

Type I diabetes results from the autoimmune destruction of the insulin-secreting pancreatic β-cells, affecting many millions of people worldwide. The optimal treatment is to restore the endogenous supply of insulin either through the transplantation of pancreas or the transplantation of islets of langerhans or simply the β-cells. However, the donated pancreas organs are limited and the available organs are only able to treat a small portion of the diabetes patients. Thus, glucose-responsive, insulin-producing cells from human origin are urgently needed. The aim of this chapter is to give some insight views to how to turn the potential human pancreatic non-endocrine cells into cells that are capable of secreting insulin in response to glucose and ameliorating insulin-deficient diabetes conditions after transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang RN, Kloppel G, Bouwens L (1995) Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia. 38:1405–11.

    Article  PubMed  CAS  Google Scholar 

  2. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes. 42:1715–20.

    Article  PubMed  CAS  Google Scholar 

  3. Guz Y, Nasir I, Teitelman G (2001) Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 142: 4956–68.

    Article  PubMed  CAS  Google Scholar 

  4. Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 429:41–6.

    Article  PubMed  CAS  Google Scholar 

  5. Slack JM (1995) Developmental biology of the pancreas. Development. 121:1569–80.

    PubMed  CAS  Google Scholar 

  6. Edlund H (1999) Pancreas: how to get there from the gut?. Curr Opin Cell Biol. 11:663–8.

    Article  PubMed  CAS  Google Scholar 

  7. Edlund H (1998). Transcribing pancreas. Dia-betes. 47:1817–23.

    Article  PubMed  CAS  Google Scholar 

  8. St-Onge L, Wehr R and Gruss P (1999) Pan-creas development and diabetes. Curr Opin Genet 9: 295–300.

    Article  CAS  Google Scholar 

  9. von Schonfeld J, Goebell H, Muller MK (1994) The islet-acinar axis of the pancreas. Int J Pancreatol. 16:131–40.

    Google Scholar 

  10. Hall PA, Lemoine NR (1992) Rapid acinar to ductal transdifferentiation in cultured human exocrine pancreas. J Pathol 166:97–103.

    Article  PubMed  CAS  Google Scholar 

  11. Githens S, Schexnayder JA, Moses RL, Denning GM, Smith JJ, Frazier ML (1994). Mouse pancreatic acinar/ductular tissue gives rise to epithelial cultures that are morphologically, biochemically, and functionally indistinguishable from interlobular duct cell cultures. In Vitro Cell Dev Biol Anim 30A:622–35.

    Article  PubMed  CAS  Google Scholar 

  12. Kerr-Conte J, Pattou F, Lecomte-Houcke M et al., (1996) Ductal cyst formation in collagen-embedded adult human islet preparations. A means to the reproduction of nesidioblastosis in vitro. Diabetes 45:1108–14.

    Article  PubMed  CAS  Google Scholar 

  13. Rooman I, Heremans Y, Heimberg H, Bouwens L (2000) Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia 43:907–14.

    Article  PubMed  CAS  Google Scholar 

  14. Gmyr V, Kerr-Conte J, Belaich S et al., (2000) Adult human cytokeratin 19-positive cells reexpress insulin promoter factor 1 in vitro: further evidence for pluripotent pancreatic stem cells in humans. Diabetes 49:1671–80.

    Article  PubMed  CAS  Google Scholar 

  15. Miller CP, McGehee RE Jr, Habener JF (1994) IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J. 13:1145–56.

    PubMed  CAS  Google Scholar 

  16. Bonner-Weir S, Taneja M, Weir GC et al., (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA. 97:7999–8004.

    Article  PubMed  CAS  Google Scholar 

  17. Gao R, Ustinov J, Pulkkinen MA, Lundin K, Korsgren O, Otonkoski T (2003) Characteri-zation of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes. 52:2007–15.

    Article  PubMed  CAS  Google Scholar 

  18. Heremans Y, Van De Casteele M, in’t Veld P et al., (2002) Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol. 159:303–12.

    Article  PubMed  CAS  Google Scholar 

  19. Lardon J, Huyens N, Rooman I, Bouwens L (2004) Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch. 444:61–5.

    Article  PubMed  Google Scholar 

  20. Baeyens L, De Breuck S, Lardon J, Mfopou J, K,Rooman I, Bouwens L. (2005) In vitro generation of insulin-producing cells from adult exocrine pancreatic cells. Diabetologia 48:49–57.

    Article  PubMed  CAS  Google Scholar 

  21. Hobbs S.M (1997) Artificial DNA; bicistronic eukaryotic expression vector pIRES-N1 submitted to EMBL/GenBank/DDBJ databases. AC no.: Y11035.

    Google Scholar 

  22. Zhao M, Amiel SA, Christie MR, Rela M, Heaton N, Huang GC. Insulin-producing cells derived from human pancreatic non-endocrine cell cultures reverse streptozotocin-induced hyperglycaemia in mice. Diabetologia. 2005 Oct; 48(10):2051–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Cai Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhao, M., Huang, G.C. (2012). Conversion of Non-endocrine Human Pancreatic Cells to Insulin-Producing Cells for Treatment of Diabetes. In: Mitry, R., Hughes, R. (eds) Human Cell Culture Protocols. Methods in Molecular Biology, vol 806. Humana Press. https://doi.org/10.1007/978-1-61779-367-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-367-7_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-366-0

  • Online ISBN: 978-1-61779-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics