Skip to main content

Automated Adherent Human Cell Culture (Mesenchymal Stem Cells)

  • Protocol
  • First Online:
Human Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 806))

Abstract

Human cell culture processes developed at research laboratory scale need to be translated to large-scale production processes to achieve commercial application to a large market. To allow this transition of scale with consistent process performance and control of costs, it will be necessary to reduce manual processing and increase automation. There are a number of commercially available platforms that will reduce manual process intervention and improve process control for different culture formats. However, in many human cell-based applications, there is currently a need to remain close to the development format, usually adherent culture on cell culture plastic or matrix-coated wells or flasks due to deterioration of cell quality in other environments, such as suspension. This chapter presents an example method for adherent automated human stem cell culture using a specific automated flask handling platform, the CompacT SelecT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Y, Hourd P, Chandra A, Williams DJ. 2010. Human cell culture process capability: a comparison of manual and automated production. J Tissue Eng Regen Med. 4(1):45–54.

    PubMed  CAS  Google Scholar 

  2. RJ Thomas, PC Hourd, DJ Williams. 2008. Application of process quality engineering techniques to improve the understanding of the in vitro processing of stem cells for therapeutic use. J Biotech. 136:148–155.

    Article  CAS  Google Scholar 

  3. RJ Thomas, AD Hope, P Hourd, M Baradez, EA Miljan, JD Sinden, DJ Williams. 2009. Automated, serum-free production of CTX0E03: a therapeutic clinical grade human neural stem cell line. Biotech letters. 31:1167–72.

    Article  CAS  Google Scholar 

  4. RJ Thomas, PC Hourd, DJ Williams. 2009. Auto-mated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotech Bioeng. 102: 1636–1644.

    Article  CAS  Google Scholar 

  5. Terstegge S, Laufenberg I, Pochert J. 2007. Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng. 96:195–201.

    Article  PubMed  CAS  Google Scholar 

  6. Joannides A, Fiore-Hériché C, Westmore K. 2006. Automated mechanical passaging: a novel and efficient method for human embryonic stem cell expansion. Stem Cells. 24:230–5.

    Article  PubMed  Google Scholar 

  7. SKW Oh, AK Chen, Y Mok, X Chen, U-M Lim, A Chin, ABH Choo, S Reuveny. 2009. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Research 2:219–230.

    Article  PubMed  CAS  Google Scholar 

  8. Serra M, Brito C, Sousa MF, Jensen J, Tostões R, Clemente J, Strehl R, Hyllner J, Carrondo MJ, Alves PM. 2010. Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J Biotechnol. 148(4):208–15.

    Article  PubMed  CAS  Google Scholar 

  9. Haasters F, Prall WC, Anz D, Bourquin C, Pautke C, Endres S, Mutschler W, Docheva D, Schieker M. 2009. Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. J Anat. 214(5):759–67.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Thomas .

Editor information

Editors and Affiliations

Appendix (Automated Protocols)

Appendix (Automated Protocols)

Cell culture media top-up (Subheading 3.2; step 2)

  • <steps>

  • <fetch>

  • <dispense liquid  =  “hMSC Expansion media” volume  =  “25 ml”/>

  • <store passage  =  “no”/>

  • </fetch>

  • </steps>

Cell culture media change (Subheading 3.2; step 3)

  • <steps>

  • <fetch>

  • <dump pause  =  “3 s”/>

  • <dispense liquid  =  “hMSC Expansion media” volume  =  “40 ml”/>

  • <store passage  =  “no”/>

  • </fetch>

  • </steps>

Cell passage (Subheading 3.2; step 4)

  • <steps>

  • <new flasktypegroup  =  “Single”>

  • <putdown name  =  “pool”/>

  • </new>

  • <fetch maxrepeat  =  “9” staggertime  =  “0 s” interleave  =  “3”>

  • <dump pause  =  “4 s”/>

  • <dispense liquid  =  “Trypsin/EDTA” volume  =  “5 ml”/>

  • <swirl repeat  =  “1” speed  =  “100%” pause  =  “0 s” capped  =  “no”/>

  • <dump pause  =  “4 s”/>

  • <incubate period  =  “10 m”/>

  • <shake repeat  =  “30” speed  =  “100%” pause  =  “0 s” capped  =  “yes”/>

  • <dispense liquid  =  “hMSC Expansion media” volume  =  “8 ml”/>

  • <swirl repeat  =  “1” speed  =  “100%” pause  =  “1 s” capped  =  “no”/>

  • <pour name  =  “pool” pause  =  “4 s” robotspeed  =  “100%”/>

  • <dispose robotspeed  =  “100%”/>

  • </fetch>

  • <mix name  =  “pool”

    • volume  =  “10 ml”

    • repeat  =  “5”

    • fromheight  =  “2 mm”

    • toheight  =  “20 mm”

    • mixspeed  =  “10 ml/s”

    • finaldispensespeed  =  “10 ml/s”

    • newtip  =  “yes”/>

  • <count name  =  “pool”

    • fromheight  =  “5 mm”

    • aspiratespeed  =  “5 ml/s”

    • dispensespeed  =  “1 ml/s”

    • pause  =  “2 s”/>

  • <pickup name  =  “pool”/>

  • <dispense liquid  =  “hMSC Expansion media”

    • volume  =  “10 ml”

    • cellconc  =  “125,000”

    • minvolume  =  “0 ml”

    • maxvolume  =  “300 ml”/>

  • <putdown name  =  “pool”/>

  • <new repeat  =  “12” flasktypegroup  =  “Single”>

  • <dispense liquid  =  “hMSC Expansion media” volume  =  “13 ml”/>

  • <putdown name  =  “output”/>

  • <mix name  =  “pool”

    • volume  =  “10 ml”

    • repeat  =  “3”

    • fromheight  =  “2 mm”

    • toheight  =  “10 mm”

    • mixspeed  =  “10 ml/s”

    • finaldispensespeed  =  “10 ml/s”/>

  • <pipette fromname  =  “pool”

    • toname  =  “output”

    • volume  =  “7 ml”

    • fromheight  =  “2 mm”

    • toheight  =  “20 mm”

    • aspiratespeed  =  “4 ml/s”

    • dispensespeed  =  “4 ml/s”

    • pause  =  “2 s”/>

  • <pickup name  =  “output”/>

  • <swirl repeat  =  “1” speed  =  “75%” pause  =  “1 s” capped  =  “yes”/>

  • <store passage  =  “yes”/>

  • </new>

  • <pickup name  =  “pool”/>

  • <dispose/>

  • </steps>

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thomas, R., Ratcliffe, E. (2012). Automated Adherent Human Cell Culture (Mesenchymal Stem Cells). In: Mitry, R., Hughes, R. (eds) Human Cell Culture Protocols. Methods in Molecular Biology, vol 806. Humana Press. https://doi.org/10.1007/978-1-61779-367-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-367-7_26

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-366-0

  • Online ISBN: 978-1-61779-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics