Skip to main content

Fluorescence-Based Proteasome Activity Profiling

  • Protocol
  • First Online:
Book cover Chemical Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 803))

Abstract

With the proteasome emerging as a therapeutic target for cancer treatment, accurate tools for monitoring proteasome (inhibitor) activity are in demand. In this chapter, we describe the synthesis and use of a fluorescent proteasome activity probe that allows for accurate profiling of proteasomal activity in cell lysates, intact cells, and murine and human patient-derived material, with high sensitivity using SDS-PAGE. The probe allows for direct scanning of the gel for fluorescent emission of the distinct proteasomal subunits and circumvents the use of Western blot analysis. Due to its suitable biochemical and biophysical properties, the fluorescent probe can also be used for confocal laser scanning microscopy and flow cytometry-based experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richardson, P. G., Mitsiades, C., Hideshima, T., and Anderson, K. C. (2006) Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu. Rev. Med 57 33–47.

    Article  PubMed  CAS  Google Scholar 

  2. Etlinger, J. D. and Goldberg, A. L. (1977) A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl Acad. Sci. USA 74 54–58.

    Article  PubMed  CAS  Google Scholar 

  3. Glickman, M. H. and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 82 373–428.

    PubMed  CAS  Google Scholar 

  4. Concannon, C. G., Koehler, B. F., Reimertz, C., Murphy, B. M., Bonner, C., Thurow, N. et al. (2007) Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene 26 1681–1692.

    Article  PubMed  CAS  Google Scholar 

  5. Hideshima, T., Richardson, P., Chauhan, D., Palombella, V. J., Elliott, P. J., Adams, J. et al. (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61 3071–3076.

    PubMed  CAS  Google Scholar 

  6. Kane, R. C., Bross, P. F., Farrell, A. T., and Pazdur, R. (2003) Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8 508–513.

    Article  PubMed  Google Scholar 

  7. Kane, R. C., Dagher, R., Farrell, A., Ko, C. W., Sridhara, R., Justice, R. et al. (2007) Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res 13 5291–5294.

    Article  PubMed  CAS  Google Scholar 

  8. Stohwasser, R., Standera, S., Peters, I., Kloetzel, P. M., and Groettrup, M. (1997) Molecular cloning of the mouse proteasome subunits MC14 and MECL-1: reciprocally regulated tissue expression of interferon-gamma-modulated proteasome subunits. Eur J Immunol. 27 1182–1187.

    Article  PubMed  CAS  Google Scholar 

  9. Dahlmann, B., Ruppert, T., Kuehn, L., Merforth, S., and Kloetzel, P. M. (2000) Different proteasome subtypes in a single tissue exhibit different enzymatic properties. J Mol Biol 303 643–653.

    Article  PubMed  CAS  Google Scholar 

  10. Dahlmann, B., Ruppert, T., Kloetzel, P. M., and Kuehn, L. (2001) Subtypes of 20S proteasomes from skeletal muscle. Biochimie 83 295–299.

    Article  PubMed  CAS  Google Scholar 

  11. Elliott, P. J., Soucy, T. A., Pien, C. S., Adams, J., and Lightcap, E. S. (2003) Assays for proteasome inhibition. Methods Mol Med 85 163–172.

    PubMed  CAS  Google Scholar 

  12. Lightcap, E. S., McCormack, T. A., Pien, C. S., Chau, V., Adams, J., and Elliott, P. J. (2000) Proteasome inhibition measurements: clinical application. Clin Chem 46 673–683.

    PubMed  CAS  Google Scholar 

  13. Berkers, C. R., Verdoes, M., Lichtman, E., Fiebiger, E., Kessler, B. M., Anderson, K. C. et al. (2005) Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat. Methods 2 357–362.

    Article  PubMed  CAS  Google Scholar 

  14. Berkers, C. R., van Leeuwen, F. W., Groothuis, T. A., Peperzak, V., van Tilburg, E. W., Borst, J. et al. (2007) Profiling proteasome activity in tissue with fluorescent probes. Mol Pharm. 4 739–748.

    Article  PubMed  CAS  Google Scholar 

  15. Bogyo, M., Shin, S., McMaster, J. S., and Ploegh, H. L. (1998) Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem Biol 5 307–320.

    Article  PubMed  CAS  Google Scholar 

  16. Kessler, B. M., Tortorella, D., Altun, M., Kisselev, A. F., Fiebiger, E., Hekking, B. G. et al. (2001) Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits. Chem Biol 8 913–929.

    Article  PubMed  CAS  Google Scholar 

  17. Ovaa, H., van Swieten, P. F., Kessler, B. M., Leeuwenburgh, M. A., Fiebiger, E., van den Nieuwendijk, A. M. et al. (2003) Chemistry in living cells: detection of active proteasomes by a two-step labeling strategy. Angew Chem Int Ed Engl 42 3626–3629.

    Article  PubMed  CAS  Google Scholar 

  18. Verdoes, M., Florea, B. I., Menendez-Benito, V., Maynard, C. J., Witte, M. D., van der Linden, W. A. et al. (2006) A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem Biol 13 1217–1226.

    Article  PubMed  CAS  Google Scholar 

  19. Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M., and Masucci, M. G. (2000) Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol 18 538–543.

    Article  PubMed  CAS  Google Scholar 

  20. Lindsten, K., Menendez-Benito, V., Masucci, M. G., and Dantuma, N. P. (2003) A transgenic mouse model of the ubiquitin/proteasome system. Nat Biotechnol 21 897–902.

    Article  PubMed  CAS  Google Scholar 

  21. Luker, G. D., Pica, C. M., Song, J., Luker, K. E., and Piwnica-Worms, D. (2003) Imaging 26S proteasome activity and inhibition in living mice. Nat Med 9 969–973.

    Article  PubMed  CAS  Google Scholar 

  22. Bogyo, M., McMaster, J. S., Gaczynska, M., Tortorella, D., Goldberg, A. L., and Ploegh, H. (1997) Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci USA 94 6629–6634.

    Article  PubMed  CAS  Google Scholar 

  23. Smith, K. M. and Pandey, R. K. (1983) New Efficient Total Syntheses of Derivatives of Protoporphyrin-IX Bearing Deuturated Methyl Groups. 20 1383–1388.

    CAS  Google Scholar 

  24. Still, W. C., Kahn, M., and Mitra, A. (1978) Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. Journal of Organic Chemistry 43 2923–2925.

    Article  CAS  Google Scholar 

  25. Palmer, J. T., Rasnick, D., Klaus, J. L., and Bromme, D. (1995) Vinyl sulfones as mechanism-based cysteine protease inhibitors. J Med Chem 38 3193–3196.

    Article  PubMed  CAS  Google Scholar 

  26. Rydzewski, R., Burrill, L., Mendonca, R., Palmer, J., Rice, M., Tahilramani, R. et al. (2006) Optimization of Subsite Binding to the 5 Subunit of the Human 20S Proteasome Using Vinyl Sulfones and 2-Keto-1,3,4-oxadiazoles: Syntheses and Cellular Properties of Potent, Selective Proteasome Inhibitors. Journal of Medicinal Chemistry 49 2953–2968.

    Article  PubMed  CAS  Google Scholar 

  27. Wang, G., Mahesh, U., Chen, G. Y., and Yao, S. Q. (2003) Solid-phase synthesis of peptide vinyl sulfones as potential inhibitors and activity-based probes of cysteine proteases. Org Lett 5 737–740.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Henk Hilkmann is acknowledged for peptide synthesis and the authors thank Dr Kees Jalink for assistance with fluorescence spectroscopy. C.R.B. is supported by KWF grant 2005-3368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huib Ovaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de Jong, A., Schuurman, K.G., Rodenko, B., Ovaa, H., Berkers, C.R. (2012). Fluorescence-Based Proteasome Activity Profiling. In: Drewes, G., Bantscheff, M. (eds) Chemical Proteomics. Methods in Molecular Biology, vol 803. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-364-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-364-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-363-9

  • Online ISBN: 978-1-61779-364-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics