Skip to main content

Modelling the Evolution of Mutualistic Symbioses

  • Protocol
  • First Online:
Bacterial Molecular Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 804))

Abstract

Mutualistic microbial symbioses are one of the key innovations in the evolution of biological diversity, enabling the expansion of species’ niches and the production of sophisticated structures such as the eukaryotic cell. For some of the best-studied cases, we are beginning to have network models of symbiotic metabolism, but this work is in its infancy and has not been developed with an evolutionary perspective. However, theoreticians have long been interested in how these symbioses arise and persist and have applied modelling approaches from economics, evolution, ecology, and sociobology to a number of fundamental questions. We provide an overview of these questions, followed by specific modelling examples. We cover economic game theory, including the Prisoner’s Dilemma, the Snowdrift game, and biological markets. We also describe the eco-evolutionary framework of adaptive dynamics, inclusive fitness, and population genetic models. We aim to provide insight into the strengths and weaknesses of each approach and into how current evolutionary methods can benefit an understanding of the mechanistic basis of host–symbiont interactions elucidated by molecular network models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavalier-Smith T. (2006) Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc R Soc B-Biol Sci, 273:1943–1952.

    Article  CAS  Google Scholar 

  2. Gould SB, Waller RF, McFadden GI. (2008) Plastid evolution. Annu Rev Plant Biol, 59:491–517.

    Article  PubMed  CAS  Google Scholar 

  3. Archibald JM. (2009) The puzzle of plastid evolution. Curr Biol, 19:R81–R88.

    Article  PubMed  CAS  Google Scholar 

  4. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB. (2001) Molecular evidence for the early colonization of land by fungi and plants. Science, 293:1129–1133.

    Article  PubMed  CAS  Google Scholar 

  5. Kneip C, Lockhart P, Voß C, Maier U. (2007) Nitrogen fixation in eukaryotes: new models for symbiosis. BMC Evol Biol, 7:55.

    Google Scholar 

  6. Moya A, Peretó J, Gil R, Latorre A. (2008) Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet, 9:218–229.

    CAS  Google Scholar 

  7. Moran NA. (2006) Symbiosis. Curr Biol, 16:R866–R871.

    Article  PubMed  CAS  Google Scholar 

  8. Sachs JL, Mueller UG, Wilcox TP, Bull JJ. (2004) The evolution of cooperation. Q Rev Biol, 79:135–160.

    Article  PubMed  Google Scholar 

  9. West SA, Griffin AS, Gardner A. (2007) Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J Evol Biol, 20:415–432.

    Article  PubMed  CAS  Google Scholar 

  10. van Baalen M, Jansen VAA. (2001) Dangerous liaisons: the ecology of private interest and common good. Oikos, 95:211–224.

    Article  Google Scholar 

  11. Frean MR, Abraham ER. (2004) Adaptation and enslavement in endosymbiont-host associations. Phys Rev E, 69:051913.

    Article  Google Scholar 

  12. Hardin G. (1968) The tragedy of the commons. Science, 162:1243–1248.

    Article  CAS  Google Scholar 

  13. Grube M, Cardinale M, de Castro JV, Mueller H, Berg G. (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J, 3:1105–1115.

    Article  PubMed  Google Scholar 

  14. Douglas AE. (2009) The microbial dimension in insect nutritional ecology. Funct Ecol, 23:38–47.

    Google Scholar 

  15. Honegger R. (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Phys, 42:553–578.

    Article  CAS  Google Scholar 

  16. Nyholm SV, McFall-Ngai M. (2004) The winnowing: establishing the squid-vibrio symbiosis. Nat Rev Microbiol, 2:632–642.

    Article  PubMed  CAS  Google Scholar 

  17. Oliver KM, Degnan PH, Burke GR, Moran NA. (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol, 55:247–266.

    Article  PubMed  CAS  Google Scholar 

  18. McCutcheon JP, Moran NA. (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci U S A, 104:19392–19397.

    Article  PubMed  CAS  Google Scholar 

  19. Thomas GH, Zucker J, Macdonald SJ, Sorokin A, Goryanin I, Douglas AE. (2009) A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC Syst Biol, 3:24.

    Google Scholar 

  20. Resendis-Antonio O, Reed JL, Encarnación S, Collado-Vides J, Palsson BØ. (2007) Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comput Biol, 3:1887–1895.

    CAS  Google Scholar 

  21. Rodriguez-Llorente I, Caviedes MA, Dary M, Palomares AJ, Cánovas FM, Peregrín-Alvarez JM. (2009) The symbiosis interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti. BMC Syst Biol, 3:63.

    Google Scholar 

  22. Noë R, Hammerstein P. (1994) Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav Ecol Sociobiol, 35:1–11.

    Article  Google Scholar 

  23. West SA, Kiers ET, Simms EL, Denison RF. (2002) Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc R Soc B-Biol Sci, 269:685–694.

    Article  Google Scholar 

  24. Frank SA. (1994) Genetics of mutualism: the evolution of altruism between species. J Theor Biol, 170:393–400.

    Article  PubMed  CAS  Google Scholar 

  25. von Neumann J, Morgenstern O. (1944) Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ.

    Google Scholar 

  26. Trivers RL. (1971) Evolution of reciprocal altruism. Q Rev Biol, 46:35–57.

    Article  Google Scholar 

  27. Axelrod R, Hamilton WD. (1981) The evolution of cooperation. Science, 211:1390–1396.

    Article  PubMed  CAS  Google Scholar 

  28. Doebeli M, Knowlton N. (1998) The evolution of interspecific mutualisms. Proc Natl Acad Sci U S A, 95:8676–8680.

    Article  PubMed  CAS  Google Scholar 

  29. Doebeli M, Hauert C. (2005) Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game. Ecol Lett, 8:748–766.

    Article  Google Scholar 

  30. Doebeli M, Hauert C, Killingback T. (2004) The evolutionary origin of cooperators and defectors. Science, 306:859–862.

    Article  PubMed  CAS  Google Scholar 

  31. Schwartz MW, Hoeksema JD. (1998) Specialization and resource trade: biological markets as a model of mutualisms. Ecology, 79:1029–1038.

    Article  Google Scholar 

  32. Nash JF. (1950) The bargaining problem. Econometrica, 18:155–162.

    Article  Google Scholar 

  33. Nash JF. (1953) Two-person cooperative games. Econometrica, 21:128–140.

    Article  Google Scholar 

  34. Akçay E, Roughgarden J. (2007) Extra-pair parentage: a new theory based on transactions in a cooperative game. Evol Ecol Res, 9:1223–1243.

    Google Scholar 

  35. Lodwig EM, Hosie AHF, Bordes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS. (2003) Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature, 422:722–726.

    Article  PubMed  CAS  Google Scholar 

  36. Heath KD, Tiffin P. (2009) Stabilizing mechanisms in a legume-rhizobium mutualism. Evolution, 63:652–662.

    Article  PubMed  Google Scholar 

  37. Noë R, Hammerstein P. (1995) Biological markets. Trends Ecol Evol, 10:336–339.

    Google Scholar 

  38. Johnstone RA, Bshary R. (2008) Mutualism, market effects and partner control. J Evol Biol, 21:879–888.

    Article  PubMed  CAS  Google Scholar 

  39. Johnstone RA, Bshary R. (2002) From parasitism to mutualism: partner control in asymmetric interactions. Ecol Lett, 5:634–639.

    Article  Google Scholar 

  40. Metz JAJ, Nisbet RM, Geritz SAH. (1992) How should we define “fitness” for general ecological scenarios? Trends Ecol Evol 7:198–202.

    CAS  Google Scholar 

  41. Dieckmann U, Law R. (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol, 34:579–612.

    Article  PubMed  CAS  Google Scholar 

  42. Ferrière R, Bronstein JL, Rinaldi S, Law R, Gauduchon M. (2002) Cheating and the evolutionary stability of mutualisms. Proc R Soc B-Biol Sci, 269:773–780.

    Article  Google Scholar 

  43. Geritz SAH, Metz JAJ, Kisdi E, Meszéna G. (1997) Dynamics of adaptation and evolutionary branching. Phys Rev Lett, 78:2024–2027.

    Article  CAS  Google Scholar 

  44. Law R, Dieckmann U. (1998) Symbiosis through exploitation and the merger of lineages in evolution. Proc R Soc B-Biol Sci, 265:1245–1253.

    Article  Google Scholar 

  45. Hamilton WD (1964) Genetical evolution of social behaviour I. J Theor Biol, 7:1–16.

    Google Scholar 

  46. Frank SA (1998) Foundations of Social Evolution. Princeton University Press, Princeton, NJ

    Google Scholar 

  47. West SA, Diggle SP, Buckling A, Gardner A, Griffins AS. (2007) The social lives of microbes. Annu Rev Ecol Evol System, 38:53–77.

    Article  Google Scholar 

  48. Mideo N, Alizon S, Day T. (2008) Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol Evol, 23:511–517.

    Google Scholar 

  49. Nuismer SL, Gomulkiewicz R, Morgan MT. (2003) Coevolution in temporally variable environments. Am Nat, 162:195–204.

    Article  PubMed  Google Scholar 

  50. Gandon S. (2002) Local adaptation and the geometry of host–parasite coevolution. Ecol Lett, 5:246–256.

    Article  Google Scholar 

  51. Gandon S, Michalakis Y. (2002) Local adaptation, evolutionary potential and host–parasite coevolution: interactions between migration, mutation, population size and generation time. J Evol Biol, 15:451–462.

    Article  Google Scholar 

  52. Nuismer SL, Thompson JN, Gomulkiewicz R. (1999) Gene flow and geographically structured coevolution. Proc R Soc B-Biol Sci, 266:605–609.

    Article  Google Scholar 

  53. Day T, Nagel L, Van Oppen MJH, Caley MJ. (2008) Factors affecting the evolution of bleaching resistance in corals. Am Nat, 171:E72–E88.

    Article  PubMed  Google Scholar 

  54. Ridenhour BJ, Nuismer SL (2007) Polygenic traits and parasite local adaptation. Evolution, 61:368–376.

    Article  PubMed  Google Scholar 

  55. Kopp M, Gavrilets S. (2006) Multilocus genetics and the coevolution of quantitative traits. Evolution, 60:1321–1336.

    PubMed  CAS  Google Scholar 

  56. Rispe C, Moran NA. (2000) Accumulation of deleterious mutations in endosymbionts: Muller’s ratchet with two levels of selection. Am Nat, 156:425–441.

    Article  Google Scholar 

  57. Wolfram Research Inc. (2008) Mathematica Version 7.0. Wolfram Research Inc., Champaign, IL.

    Google Scholar 

  58. MathWorks. (2009) MATLAB Version 7.9. MathWorks, Natick, MA.

    Google Scholar 

  59. R Development Core Team. (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  60. Ritchie D. (1972) C Programming Language. Bell Telephone Laboratories, Murray Hill, NJ.

    Google Scholar 

  61. Stroustrup B. (1979) C++ Programming Language. Bell Telephone Laboratories, Murray Hill, NJ.

    Google Scholar 

  62. Railsback SF, Lytinen SL, Jackson SK. (2006) Agent-based simulation platforms: review and development recommendations. Simul Trans Soc Model Simul Int, 82:609–623.

    Article  Google Scholar 

  63. Foster KR, Wenseleers T. (2006) A general model for the evolution of mutualisms. J Evol Biol, 19:1283–1293.

    Article  PubMed  CAS  Google Scholar 

  64. Griffin A, West S, Buckling A. (2004) Cooperation and competition in pathogenic bacteria. Nature, 430:1024.

    Article  PubMed  CAS  Google Scholar 

  65. Morgan AD, Gandon S, Buckling A. (2005) The effect of migration on local adaptation in a coevolving host–parasite system. Nature, 437:253–256.

    Article  PubMed  CAS  Google Scholar 

  66. Buckling A, Brockhurst MA (2008) Kin selection and the evolution of virulence. Heredity, 100:484–488.

    Article  PubMed  CAS  Google Scholar 

  67. Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol, 21:585–592.

    Google Scholar 

  68. Otto SP, Day T. (2007) A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution. Princeton University Press, Princeton, NJ.

    Google Scholar 

  69. Edelstein-Keshet L. (1988) Mathematical Models in Biology. Random House, New York, NY.

    Google Scholar 

  70. Hastings A. (1997) Population Biology: Concepts and Models. Springer, New York, NY.

    Google Scholar 

  71. Connor RC. (1995) The benefits of mutualism: a conceptual framework. Biol Rev Camb Philos Soc, 70:427–457.

    Article  Google Scholar 

  72. Hofbauer J, Sigmund K. (1998) Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge.

    Google Scholar 

  73. McElreath R, Boyd R. (2007) Mathematical Models of Social Evolution: A Guide for the Perplexed. University of Chicago Press, Chicago, IL.

    Google Scholar 

  74. Dercole F, Rinaldi S. (2008) Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications. Princeton University Press, Princeton, NJ.

    Google Scholar 

  75. Taylor PD, Frank SA. (1996) How to make a kin selection model. J Theor Biol, 180:27–37.

    Article  PubMed  CAS  Google Scholar 

  76. Roughgarden J. (1979) Theory of Population Genetics and Evolutionary Ecology: An Introduction. Macmillan Publishing Company, New York, NY.

    Google Scholar 

Download references

Acknowledgments

We thank D. Drown, B. Foley, the volume editors, and an anonymous reviewer for helpful comments on the manuscript. This work was supported by NSF PGRP 0820846 to S. Nuzhdin and NSF DMS 0540524 to R. Gomulkiewicz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren L. Friesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Friesen, M.L., Jones, E.I. (2012). Modelling the Evolution of Mutualistic Symbioses. In: van Helden, J., Toussaint, A., Thieffry, D. (eds) Bacterial Molecular Networks. Methods in Molecular Biology, vol 804. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-361-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-361-5_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-360-8

  • Online ISBN: 978-1-61779-361-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics