Advertisement

Post-transcriptional Regulatory Elements for Enhancing Transient Gene Expression Levels in Mammalian Cells

  • Mariati
  • Steven C. L. Ho
  • Miranda G. S. Yap
  • Yuansheng YangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 801)

Abstract

Low yield from transient gene expression in mammalian cells limits its application to areas where large amount of proteins are needed. One effective approach to enhance transient gene expression levels is to use post-transcriptional regulatory elements (PTREs). We have evaluated the effect of five PTREs on the transient gene expression of three proteins in two cell lines. Most of the elements increased expression but exhibited cell-specific and gene-specific effects. The tripartite leader sequence of human adenovirus mRNA linked with a major late promoter enhancer gave the most universal and highest enhancement of gene expression levels. It increased the expression of all three proteins in HEK293 cells and two proteins in CHO K1 cells by 3.6- to 7.6-fold. Combinations of multiple PTREs increased protein expression as much as 10.5-fold.

Key words

Post-transcription Mammalian cells Transient gene expression Untranslated region Intron WPRE 

Notes

Acknowledgments

This work was supported by the Biomedical Research Council/Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

References

  1. 1.
    Baldi, L., Hacker, D. L., Adam, M., and Wurm, F. M. (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives, Biotechnology Letters 29, 677–684.PubMedCrossRefGoogle Scholar
  2. 2.
    Baldi, L., Muller, N., Picasso, S., Jacquet, R., Girard, P., Thanh, H. P., Derow, E., and Wurm, F. M. (2005) Transient gene expression in suspension HEK-293 cells: Application to large-scale protein production, Biotechnology Progress 21, 148–153.PubMedCrossRefGoogle Scholar
  3. 3.
    Carpentier, E., Paris, S., Kamen, A. A., and Durocher, Y. (2007) Limiting factors governing protein expression following polyethylenimine-mediated gene transfer in HEK293-EBNA1 cells, Journal Of Biotechnology 128, 268–280.PubMedCrossRefGoogle Scholar
  4. 4.
    Wurm, F., and Bernard, A. (1999) Large-scale transient expression in mammalian cells for recombinant protein production, Current Opinion In Biotechnology 10, 156–159.PubMedCrossRefGoogle Scholar
  5. 5.
    Backliwal, G., Hildinger, M., Chenuet, S., Wulhfard, S., De Jesus, M., and Wurm, F. M. (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions, Nucleic Acids Research 36.Google Scholar
  6. 6.
    Durocher, Y., Perret, S., and Kamen, A. (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells, Nucleic Acids Research 30.Google Scholar
  7. 7.
    Kaufman, R. J. (2000) Overview of vector design for mammalian gene expression, Molecular Biotechnology 16, 151–160.PubMedCrossRefGoogle Scholar
  8. 8.
    Barnes, L. M., Bentley, C. M., and Dickson, A. J. (2003) Stability of protein production from recombinant mammalian cells, Biotechnology And Bioengineering 81, 631–639.PubMedCrossRefGoogle Scholar
  9. 9.
    Kim, C. H., Oh, Y., and Lee, T. H. (1997) Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells, Gene 199, 293–301.PubMedCrossRefGoogle Scholar
  10. 10.
    Brun, S., Faucon-Biguet, N., and Mallet, J. (2003) Optimization of transgene expression at the posttranscriptional level in neural cells: Implications for gene therapy, Molecular Therapy 7, 782–789.PubMedCrossRefGoogle Scholar
  11. 11.
    Knappskog, S., Ravneberg, H., Gjerdrum, C., Trosse, C., Stern, B., and Pryme, I. F. (2007) The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide, Journal Of Biotechnology 128, 705–715.PubMedCrossRefGoogle Scholar
  12. 12.
    Liao, M. M. L., and Sunstrom, N. A. (2006) A transient expression vector for recombinant protein production in Chinese hamster ovary cells, Journal Of Chemical Technology And Biotechnology 81, 82–88.CrossRefGoogle Scholar
  13. 13.
    Luo, M. J., and Reed, R. (1999) Splicing is required for rapid and efficient mRNA export in metazoans, Proceedings Of The National Academy Of Sciences Of The United States Of America 96, 14937–14942.PubMedCrossRefGoogle Scholar
  14. 14.
    Makrides, S. C. (1999) Components of vectors for gene transfer and expression in mammalian cells, Protein Expression And Purification 17, 183–202.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang, L., Leng, Q. X., and Mixson, A. J. (2005) Alteration in the IL-2 signal peptide affects secretion of proteins in vitro and in vivo, Journal Of Gene Medicine 7, 354–365.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhao, J., Hyman, L., and Moore, C. (1999) Formation of mRNA 3′ ends in eukaryotes: Mechanism, regulation, and interrelationships with other steps in mRNA synthesis, Microbiology And Molecular Biology Reviews 63, 405–45.Google Scholar
  17. 17.
    Vivinus, S., Baulande, S., van Zanten, M., Campbell, F., Topley, P., Ellis, J. H., Dessen, P., and Coste, H. (2001) An element within the 5′ untranslated region of human Hsp70 mRNA which acts as a general enhancer of mRNA translation, European Journal Of Biochemistry 268, 1908–1917.PubMedCrossRefGoogle Scholar
  18. 18.
    Stein, I., Itin, A., Einat, P., Skaliter, R., Grossman, Z., and Keshet, E. (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: Implications for translation under hypoxia, Molecular And Cellular Biology 18, 3112–3119.PubMedGoogle Scholar
  19. 19.
    Logan, J. S., T. (1984) Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection, Proc. Natl. Acad. Sci. USA 81, 3655–3659.Google Scholar
  20. 20.
    Massie, B., Couture, F., Lamoureux, L., Mosser, D. D., Guilbault, C., Jolicoeur, P., Belanger, F., and Langelier, Y. (1998) Inducible overexpression of a toxic protein by an adenovirus vector with a tetracycline-regulatable expression cassette, Journal Of Virology 72, 2289–2296.PubMedGoogle Scholar
  21. 21.
    Massie, B., Mosser, D. D., Koutroumanis, M., Vitte-Mony, I., Lamoureux, L., Couture, F., Paquet, L., Guilbault, C., Dionne, J., Chahla, D., Jolicoeur, P., and Langelier, Y. (1998) New adenovirus vectors for protein production and gene transfer, Cytotechnology 28, 53–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Chapman, B. S., Thayer, R.M., Vincent, K.A., and Haigwood, N.L. (1991) Effect of intron A from human cytomegalovirus (Towne) immediately-early gene on heterologous expression in mammalian cells, Nucleic Acids Research 19, 3979–3986.Google Scholar
  23. 23.
    Simari, R. D., Yang, Z. Y., Ling, X., Stephan, D., Perkins, N. D., Nabel, G. J., and Nabel, E. G. (1998) Requirements for enhanced transgene expression by untranslated sequences from the human cytomegalovirus immediate-early gene, Molecular Medicine 4, 700–706.PubMedGoogle Scholar
  24. 24.
    Xia, W., Bringmann, P., McClary, J., Jones, P. P., Manzana, W., Zhu, Y., Wang, S. J., Liu, Y., Harvey, S., Madlansacay, M. R., McLean, K., Rosser, M. P., MacRobbie, J., Olsen, C. L., and Cobb, R. R. (2006) High levels of protein expression using different mammalian CMV promoters in several cell lines, Protein Expression And Purification 45, 115–124.PubMedCrossRefGoogle Scholar
  25. 25.
    Xu, Z. L., Mizuguchi, H., Ishii-Watabe, A., Uchida, E., Mayumi, T., and Hayakawa, T. (2002) Strength evaluation of transcriptional regulatory elements for transgene expression by adenovirus vector, Journal Of Controlled Release 81, 155–163.PubMedCrossRefGoogle Scholar
  26. 26.
    Donello, J. E., Loeb, J. E., and Hope, T. J. (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element, Journal Of Virology 72, 5085–5092.PubMedGoogle Scholar
  27. 27.
    Mahonen, A. J., Airenne, K. J., Purola, S., Peltomaa, E., Kaikkonen, M. U., Riekkinen, M. S., Heikura, T., Kinnunen, K., Roschier, M. M., Wirth, T., and Yla-Herttuala, S. (2007) Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells, Journal Of Biotechnology 131, 1–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Schambach, A., Wodrich, H., Hildinger, M., Bohne, J., Krausslich, H. G., and Baum, C. (2000) Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors, Molecular Therapy 2, 435–445.PubMedCrossRefGoogle Scholar
  29. 29.
    Xu, Z. L., Mizuguchi, H., Mayumi, T., and Hayakawa, T. (2003) Woodchuck hepatitis virus post-transcriptional regulation element enhances transgene expression from adenovirus vectors, Biochimica Et Biophysica Acta-General Subjects 1621, 266–271.CrossRefGoogle Scholar
  30. 30.
    Zufferey, R., Donello, J. E., Trono, D., and Hope, T. J. (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors, Journal Of Virology 73, 2886–2892.PubMedGoogle Scholar
  31. 31.
    Mariati, Ho, S. C. L., Yap, M. G. S., and Yang, Y. S. (2010) Evaluating post-transcriptional regulatory elements for enhancing transient gene expression levels in CHO K1 and HEK293 cells, Protein Expression And Purification 69, 9–15.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mariati
    • 1
  • Steven C. L. Ho
    • 1
  • Miranda G. S. Yap
    • 1
  • Yuansheng Yang
    • 1
    Email author
  1. 1.Agency for Science, Technology and ResearchBioprocessing Technology InstituteSingaporeSingapore

Personalised recommendations