Skip to main content

Exploring Chemical Space: Recent Advances in Chemistry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 800))

Abstract

Recent advances and concepts for exploring chemical space are highlighted in this chapter and show how the synthetic chemical world meets the demand of making large and relevant collection of new molecules for analyzing the biological world more closely.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dobson CM (2004) Chemical space and biology. Nature 432:824–828

    Article  PubMed  CAS  Google Scholar 

  2. Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861

    Article  PubMed  CAS  Google Scholar 

  3. Paolini GV, Shapland RHB, van Hoorn WP et al (2006) Global mapping of pharmacological space. Nat Biotechnol 24:805–815

    Article  PubMed  CAS  Google Scholar 

  4. Reymond J-L, van Deursen R, Blum LC et al (2010) Chemical space as a source for new drugs. Med Chem Comm 1:30–38

    Article  CAS  Google Scholar 

  5. Lipinski CA, Lombardo F, Dominy BW et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  6. Putta S, Beroza P (2007) Shape of things: computer modelling of molecular shape in drug discovery. Curr Top Med Chem 7:1514–1524

    Article  PubMed  CAS  Google Scholar 

  7. Nicholls A, McGaughey GB, Sheridan RP et al (2010) Molecular Shape and Medicinal Chemistry: A Perspective. J Med Chem 53:3862–3886

    Article  PubMed  CAS  Google Scholar 

  8. Sauer WHB, Schwarz MK (2003) Molecular Shape Diversity of Combinatorial Libraries: A Prerequisite for Broad Bioactivity. J Chem Inf Comput Sci 43:987–1003

    Article  PubMed  CAS  Google Scholar 

  9. Lovering F, Bikker J, Humblet C (2009) Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J Med Chem 52:6752–6756

    Article  PubMed  CAS  Google Scholar 

  10. Clemons PA, Bodycombe NE, Carrinski HA et al (2010) Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc Natl Acad Sci USA 107:18787–18792

    Article  PubMed  CAS  Google Scholar 

  11. Cooper TWJ, Campbell IB, Macdonald, SJF (2010) Factors Determining the Selection of Organic Reactions by Medicinal Chemists and the Use of These Reactions in Arrays (Small Focused Libraries). Angew Chem Int Ed 49: 8082–8091

    Article  CAS  Google Scholar 

  12. Hopkins AL, Bickerton GR (2010) Drug discovery. Know your chemical space. Nat Chem Biol 6:482–483

    Article  PubMed  CAS  Google Scholar 

  13. Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43:46–58

    Article  Google Scholar 

  14. Jacoby E, Mozzarelli A (2009) Chemogenomic strategies to expand the bioactive chemical space. Curr Med Chem 16:4374–4381

    Article  PubMed  CAS  Google Scholar 

  15. Dandapani S, Marcaurelle LA (2010) Grand Challenge Commentary: Accessing new chemical space for ‘undruggable’ targets. Nat Chem Biol 6:861–863

    Article  PubMed  CAS  Google Scholar 

  16. Pulici M, Cervi G, Martina K et al (2003) Use of multicomponent, domino, and other one-pot syntheses on solid phase: Powerful tools for the generation of libraries of diverse and complex compounds. Comb Chem High Throughput Screen 6:693–727

    PubMed  CAS  Google Scholar 

  17. Ulaczyk-Lesanko A, Hall DG (2005) Wanted: New multicomponent reactions for generating libraries of polycyclic natural products. Curr Opin Chem Biol 9:266–276

    Article  PubMed  CAS  Google Scholar 

  18. Sunderhaus JD, Martin SF (2009) Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chem Eur J 15:1300–1308

    Article  PubMed  CAS  Google Scholar 

  19. Toure BB, Hall DG (2009) Natural Product Synthesis Using Multicomponent Reaction Strategies. Chem Rev 109:4439–4486

    Article  PubMed  CAS  Google Scholar 

  20. Biggs-Houck JE, Younai A, Shaw JT (2010) Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr Opin Chem Biol 14:371–382

    Article  PubMed  CAS  Google Scholar 

  21. Ramon DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): The new frontier, Angew Chem Int Ed 44:1602–1634

    Article  CAS  Google Scholar 

  22. Panek JS, Yang M, Xu F (1992) Diastereoselective additions of chiral (E)-crotylsilanes to in situ generated oxonium ions: a direct asymmetric synthesis of functionalized homoallylic ethers. J Org Chem 57:5790–5792

    Article  CAS  Google Scholar 

  23. Pospisil J, Kumamoto T, Marko IE (2006) Highly diastereoselective silyl-modified sakurai multicomponent reaction. Angew Chem Int Ed 45:3357–3360

    Article  CAS  Google Scholar 

  24. Lipomi DJ, Panek JS (2005) Three-Component, Room Temperature Crotylation Catalyzed by Solid-Supported Bronsted Acid: Enantioselective Synthesis of Homoallylic Carbamates. Org Lett 7:4701–4704

    Article  PubMed  CAS  Google Scholar 

  25. Petasis NA, Zavialov IA (1998) Highly Stereocontrolled One-Step Synthesis of anti-beta -Amino Alcohols from Organoboronic Acids, Amines, and alpha -Hydroxy Aldehydes. J Am Chem Soc 120:11798–11799

    Article  CAS  Google Scholar 

  26. Candeias NR, Montalbano F, Cal PMSD et al (2010) Boronic Acids and Esters in the Petasis-Borono Mannich Multicomponent Reaction. Chem Rev 110:6169–6193

    Article  PubMed  CAS  Google Scholar 

  27. Kappe CO (2000) Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog. Acc Chem Res 33:879–888

    Article  PubMed  CAS  Google Scholar 

  28. Chen X-H, Xu X-Y, Liu H et al (2006) Highly Enantioselective Organocatalytic Biginelli Reaction. J Am Chem Soc 128:14802–14803

    Article  PubMed  CAS  Google Scholar 

  29. Doemling A (2006) Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem Rev 106:17–89

    Article  CAS  Google Scholar 

  30. Andreana PR, Liu CC, Schreiber SL (2004) Stereochemical Control of the Passerini Reaction. Org Lett 6:4231–4233

    Article  PubMed  CAS  Google Scholar 

  31. Wang S-X, Wang M-X, Wang D-X et al (2008) Catalytic enantioselective Passerini three-component reaction. Angew Chem Int Ed 47:388–391

    Article  CAS  Google Scholar 

  32. Lou S, Schaus SE (2008) Asymmetric Petasis Reactions Catalyzed by Chiral Biphenols. J Am Chem Soc 130:6922–6923

    Article  PubMed  CAS  Google Scholar 

  33. Gommermann N, Koradin C, Polborn K et al (2003) Enantioselective, copper(I)-catalyzed three-component reaction for the preparation of propargylamines. Angew Chem Int Ed 42:5763–5766

    Article  CAS  Google Scholar 

  34. Carlone A, Cabrera S, Marigo M et al (2007) A new approach for an organocatalytic multicomponent domino asymmetric reaction. Angew Chem Int Ed 46:1101–1104

    Article  CAS  Google Scholar 

  35. Grondal C, Jeanty M, Enders D (2010) Organocatalytic cascade reactions as a new tool in total synthesis. Nat Chem 2:167–178

    Article  PubMed  CAS  Google Scholar 

  36. Enders D, Huettl MRM, Grondal C et al (2006) Control of four stereocenters in a triple cascade organocatalytic reaction. Nature 441:861–863

    Article  PubMed  CAS  Google Scholar 

  37. Bon RS, Waldmann H (2010) Bioactivity-Guided Navigation of Chemical Space. Acc Chem Res 43:1103–1114

    Article  PubMed  CAS  Google Scholar 

  38. Koch MA, Schuffenhauer A, Scheck M et al (2005) Charting biologically relevant chemical space: A structural classification of natural products (SCONP), Proc Natl Acad Sci USA 102:17272–17277

    Article  PubMed  CAS  Google Scholar 

  39. Schuffenhauer A, Ertl P, Roggo S et al (2007) The Scaffold Tree - Visualization of the Scaffold Universe by Hierarchical Scaffold Classification, J Chem Inf Model 47:47–58

    Article  PubMed  CAS  Google Scholar 

  40. Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227

    Article  PubMed  CAS  Google Scholar 

  41. Reayi A, Arya P (2005) Natural product-like chemical space: search for chemical dissectors of macromolecular interactions. Curr Opin Chem Biol 9:240–247

    Article  PubMed  CAS  Google Scholar 

  42. Kumar K, Waldmann H (2009) Synthesis of natural product inspired compound collections. Angew Chem Int Ed 48:3224–3242

    Article  CAS  Google Scholar 

  43. Lessmann T, Leuenberger MG, Menninger S et al (2007) Natural Product-Derived Modulators of Cell Cycle Progression and Viral Entry by Enantioselective Oxa Diels-Alder Reactions on the Solid Phase. Chem Biol 14:443–451

    Article  PubMed  CAS  Google Scholar 

  44. Antonchick AP, Gerding-Reimers C, Catarinella M et al (2010) Highly enantioselective synthesis and cellular evaluation of spirooxindoles inspired by natural products. Nat Chem 2:735–740

    Article  PubMed  CAS  Google Scholar 

  45. Tan DS (2005) Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat Chem Biol 1:74–84

    Article  PubMed  CAS  Google Scholar 

  46. Thomas GL, Wyatt EE, Spring DR (2006) Enriching chemical space with diversity-oriented synthesis. Curr Opin Drug Discov Develop 9:700–712

    CAS  Google Scholar 

  47. Peuchmaur M, Wong Y-S (2008) Expanding the chemical space in practice: diversity-oriented synthesis. Comb Chem High Throughput Screen 11:587–601

    Article  PubMed  CAS  Google Scholar 

  48. Dandapani S, Marcaurelle LA (2010) Current strategies for diversity-oriented synthesis. Curr Opin Chem Biol 14:362–370

    Article  PubMed  CAS  Google Scholar 

  49. Biggs-Houck JE, Younai A, Shaw JT (2010) Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr Opin Chem Biol 14:371–382

    Article  PubMed  CAS  Google Scholar 

  50. Kumagai N, Muncipinto G, Schreiber SL (2006) Short synthesis of skeletally and stereochemically diverse small molecules by coupling Petasis condensation reactions to cyclization reactions. Angew Chem Int Ed 45:3635–3638

    Article  CAS  Google Scholar 

  51. Schaus JV, Jain N, Panek JS (2000) Asymmetric synthesis of homoallylic amines and functionalized pyrrolidines via direct amino-crotylation of in situ generated imines. Tetrahedron 56:10263–10274

    Article  CAS  Google Scholar 

  52. Flamme EM, Roush WR (2002) Enantioselective Synthesis of 1,5-anti- and 1,5-syn-Diols Using a Highly Diastereoselective One-Pot Double Allylboration Reaction Sequence. J Am Chem Soc 124:13644–13645

    Article  PubMed  CAS  Google Scholar 

  53. Westermann B, Ayaz M, van Berkel SS (2010) Enantiodivergent Organocascade Reactions. Angew Chem Int Ed 49:846–849

    CAS  Google Scholar 

  54. Simmons B, Walji AM, MacMillan DWC (2009) Cycle-Specific Organocascade Catalysis: Application to Olefin Hydroamination, Hydro-oxidation, and Amino-oxidation, and to Natural Product Synthesis. Angew Chem Int Ed 48:4349–4353

    Article  CAS  Google Scholar 

  55. Sunderhaus JD, Martin SF (2009) Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chem Eur J 15:1300–1308

    Article  PubMed  CAS  Google Scholar 

  56. Di Micco S, Vitale R, Pellecchia M et al (2009) Identification of Lead Compounds as Antagonists of Protein Bcl-xL with a Diversity-Oriented Multidisciplinary Approach. J Med Chem 52:7856–7867

    Article  PubMed  Google Scholar 

  57. Muncipinto G, Kaya T, Wilson JA et al (2010) Expanding Stereochemical and Skeletal Diversity Using Petasis Reactions and 1,3-Dipolar Cycloadditions. Org Lett 12:5230–5233

    Article  PubMed  CAS  Google Scholar 

  58. Marcaurelle LA, Comer E, Dandapani S et al (2010) An Aldol-Based Build/Couple/Pair Strategy for the Synthesis of Medium- and Large-Sized Rings: Discovery of Macrocyclic Histone Deacetylase Inhibitors. J Am Chem Soc 132:16962–16976

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Sing Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wong, YS. (2012). Exploring Chemical Space: Recent Advances in Chemistry. In: Zanders, E. (eds) Chemical Genomics and Proteomics. Methods in Molecular Biology, vol 800. Humana Press. https://doi.org/10.1007/978-1-61779-349-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-349-3_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-348-6

  • Online ISBN: 978-1-61779-349-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics