Skip to main content
Book cover

Myogenesis pp 153–169Cite as

Immunocytochemistry to Study Myogenesis in Zebrafish

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 798))

Abstract

During myogenesis, cells gradually transition from mesodermal precursors to myoblasts, myocytes, and then to muscle fibers. The molecular characterization of this process requires the ability to identify each of these cell types and the factors that regulate the transitions between them. The most versatile technique for assaying cell identities in situ is immunocytochemistry, because multiple independent molecular markers of differentiation can be assayed simultaneously. The zebrafish has developed into a popular model for the study of myogenesis, and immunocytochemical techniques have been critical. We have adapted existing protocols to optimize immunocytochemistry in zebrafish, and have tested many antibodies developed against mouse, chick, and frog muscle antigens for their cross-reactivity in zebrafish. Here, we present protocols for whole mount immunocytochemistry on both formaldehyde and Carnoy’s fixed embryos as well as on sectioned zebrafish tissue. We include a table of antibodies useful for experiments on the molecular biology of myogenesis in zebrafish.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Joyner, A., and Wall, N. (2008) Immunohistochemistry of Whole-Mount Mouse Embryos, Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot4820.

  2. Psychoyos, D., and Finnell, R. (2009) Method for whole mount antibody staining in chick, JoVE. 24. http://www.jove.com/index/details.stp?id=956 , doi: 10.3791/956.

  3. Lee, C., Kieserman, E., Gray, R. S., Park, T. J., and Wallingford, J. (2008) Whole-mount fluorescence immunocytochemistry on Xenopus embryos, Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot4957.

  4. Ramachandran, P., and Budnik, V. (2010) Immunocytochemical staining of Drosophila larval body-wall muscles, Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot5470.

  5. Harlow, E., and Lane, D. (1999) Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  6. van Raamsdonk, W., Tekronnie, G., Pool, C. W., and van de Laarse, W. (1980) An immune histochemical and enzymic characterization of the muscle fibres in myotomal muscle of the teleost Brachydanio rerio, Hamilton-Buchanan, Acta Histochem 67, 200–216.

    Article  PubMed  Google Scholar 

  7. Westerfield, M. (2000) The Zebrafish Book. A guide for the laboratory use of zebrafish (Danio rerio), 4th ed., University of Oregon Press, Eugene.

    Google Scholar 

  8. Patel, N. H., Martin-Blanco, E., Coleman, K. G., Poole, S. J., Ellis, M. C., Kornberg, T. B., and Goodman, C. S. (1989) Expression of engrailed proteins in arthropods, annelids, and chordates, Cell 58, 955–968.

    Article  PubMed  CAS  Google Scholar 

  9. Hatta, K., Schilling, T. F., BreMiller, R. A., and Kimmel, C. B. (1990) Specification of jaw muscle identity in zebrafish: correlation with engrailed-homeoprotein expression, Science 250, 802–805.

    Article  PubMed  CAS  Google Scholar 

  10. Hatta, K., Bremiller, R., Westerfield, M., and Kimmel, C. B. (1991) Diversity of expression of engrailed-like antigens in zebrafish, Development 112, 821–832.

    PubMed  CAS  Google Scholar 

  11. Wang, S. M., and Greaser, M. L. (1985) Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils, J Muscle Res Cell Motil 6, 293–312.

    Article  PubMed  CAS  Google Scholar 

  12. Barresi, M. J., D’Angelo, J. A., Hernandez, L. P., and Devoto, S. H. (2001) Distinct mechanisms regulate slow-muscle development, Curr Biol 11, 1432–1438.

    Article  PubMed  CAS  Google Scholar 

  13. Kintner, C. R., and Brockes, J. P. (1984) Monoclonal antibodies identify blastemal cells derived from dedifferentiating limb regeneration, Nature 308, 67–69.

    Article  PubMed  CAS  Google Scholar 

  14. Devoto, S. H., Melancon, E., Eisen, J. S., and Westerfield, M. (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation, Development 122, 3371–3380.

    PubMed  CAS  Google Scholar 

  15. Webster, C., Silberstein, L., Hays, A. P., and Blau, H. M. (1988) Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy, Cell 52, 503–513.

    Article  PubMed  CAS  Google Scholar 

  16. Blagden, C. S., Currie, P. D., Ingham, P. W., and Hughes, S. M. (1997) Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog, Genes Dev 11, 2163–2175.

    Article  PubMed  CAS  Google Scholar 

  17. Lazarides, E., and Burridge, U. (1975) α-Actinin: immunofluorescent localization of a muscle structural protein in non-muscle cells, Cell 6, 289–298.

    Article  PubMed  CAS  Google Scholar 

  18. Costa, M. L., Escaleira, R. C., Jazenko, F., and Mermelstein, C. S. (2008) Cell adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix, Cell Motil Cytoskeleton 65, 801–815.

    Article  PubMed  Google Scholar 

  19. Schiaffino, S., Gorza, L., Sartore, S., Saggin, L., Ausoni, S., Vianello, M., Gundersen, K., and Lomo, T. (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres, J Muscle Res Cell Motil 10, 197–205.

    Article  PubMed  CAS  Google Scholar 

  20. Moore, C. A., Parkin, C. A., Bidet, Y., and Ingham, P. W. (2007) A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion, Development 134, 3145–3153.

    Article  PubMed  CAS  Google Scholar 

  21. Henry, C. A., McNulty, I. M., Durst, W. A., Munchel, S. E., and Amacher, S. L. (2005) Interactions between muscle fibers and segment boundaries in zebrafish, Dev Biol 287, 346–360.

    Article  PubMed  CAS  Google Scholar 

  22. Pereboev, A. V., Ahmed, N., thi Man, N., and Morris, G. E. (2001) Epitopes in the interacting regions of β-dystroglycan (PPxY motif) and dystrophin (WW domain), Biochim Biophys Acta 1527, 54–60.

    Google Scholar 

  23. Hall, T. E., Bryson-Richardson, R. J., Berger, S., Jacoby, A. S., Cole, N. J., Hollway, G. E., Berger, J., and Currie, P. D. (2007) The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2-deficient congenital muscular dystrophy, Proc Natl Acad Sci USA 104, 7092–7097.

    Article  PubMed  CAS  Google Scholar 

  24. Bassett, D. I., Bryson-Richardson, R. J., Daggett, D. F., Gautier, P., Keenan, D. G., and Currie, P. D. (2003) Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo, Development 130, 5851–5860.

    Article  PubMed  CAS  Google Scholar 

  25. Franke, W. W., Stehr, S., Stumpp, S., Kuhn, C., Heid, H., Rackwitz, H. R., Schnölzer, M., Baumann, R., Holzhausen, H. J., and Moll, R. (1996) Specific immunohistochemical detection of cardiac/fetal α-actin in human cardiomyocytes and regenerating skeletal muscle cells, Differentiation 60, 245–250.

    Article  PubMed  CAS  Google Scholar 

  26. Hinits, Y., and Hughes, S. M. (2007) Mef2s are required for thick filament formation in nascent muscle fibres, Development 134, 2511–2519.

    Article  PubMed  CAS  Google Scholar 

  27. Rowlerson, A., Radaelli, G., Mascarello, F., and Veggetti, A. (1997) Regeneration of skeletal muscle in two teleost fish: Sparus aurata and Brachydanio rerio, Cell Tissue Res 289, 311–322.

    Article  PubMed  CAS  Google Scholar 

  28. Ellis, J. M., Man, N. T., Morris, G. E., Ginjaar, I. B., Moorman, A. F., and van Ommen, G. J. (1990) Specificity of dystrophin analysis improved with monoclonal antibodies, Lancet 336, 881–882.

    Article  PubMed  CAS  Google Scholar 

  29. Parsons, M. J., Campos, I., Hirst, E. M., and Stemple, D. L. (2002) Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos, Development 129, 3505–3512.

    PubMed  CAS  Google Scholar 

  30. Cerny, L. C., and Bandman, E. (1987) Expression of myosin heavy chain isoforms in regenerating myotubes of innervated and denervated chicken pectoral muscle, Dev Biol 119, 350–362.

    Article  PubMed  CAS  Google Scholar 

  31. Miller, J. B., Crow, M. T., and Stockdale, F. E. (1985) Slow and fast myosin heavy chain content defines three types of myotubes in early muscle cell cultures, J Cell Biol 101, 1643–1650.

    Article  PubMed  CAS  Google Scholar 

  32. Crow, M. T., and Stockdale, F. E. (1986) Myosin expression and specialization among the earliest muscle fibers of the developing avian limb, Dev Biol 113, 238–254.

    Article  PubMed  CAS  Google Scholar 

  33. Elworthy, S., Hargrave, M., Knight, R., Mebus, K., and Ingham, P. W. (2008) Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity, Development 135, 2115–2126.

    Article  PubMed  CAS  Google Scholar 

  34. De Angelis, L., Borghi, S., Melchionna, R., Berghella, L., Baccarani-Contri, M., Parise, F., Ferrari, S., and Cossu, G. (1998) Inhibition of myogenesis by transforming growth factor β is density-dependent and related to the translocation of transcription factor MEF2 to the cytoplasm, Proc Natl Acad Sci USA 95, 12358–12363.

    Article  PubMed  Google Scholar 

  35. Bader, D., Masaki, T., and Fischman, D. A. (1982) Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro, J Cell Biol 95, 763–770.

    Article  PubMed  CAS  Google Scholar 

  36. Hammond, C. L., Hinits, Y., Osborn, D. P., Minchin, J. E., Tettamanti, G., and Hughes, S. M. (2007) Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish, Dev Biol 302, 504–521.

    Article  PubMed  CAS  Google Scholar 

  37. Devoto, S. H., Stoiber, W., Hammond, C. L., Steinbacher, P., Haslett, J. R., Barresi, M. J., Patterson, S. E., Adiarte, E. G., and Hughes, S. M. (2006) Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish, Evol Dev 8, 101–110.

    Article  PubMed  CAS  Google Scholar 

  38. Ericson, J., Morton, S., Kawakami, A., Roelink, H., and Jessell, T. M. (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity, Cell 87, 661–673.

    Article  PubMed  CAS  Google Scholar 

  39. Kawakami, A., Kimura-Kawakami, M., Nomura, T., and Fujisawa, H. (1997) Distributions of PAX6 and PAX7 proteins suggest their involvement in both early and late phases of chick brain development, Mech Dev 66, 119–130.

    Article  PubMed  CAS  Google Scholar 

  40. Bagri, A., Gurney, T., He, X., Zou, Y. R., Littman, D. R., Tessier-Lavigne, M., and Pleasure, S. J. (2002) The chemokine SDF1 regulates migration of dentate granule cells, Development 129, 4249–4260.

    PubMed  CAS  Google Scholar 

  41. Liew, H. P., Choksi, S. P., Wong, K. N., and Roy, S. (2008) Specification of vertebrate slow-twitch muscle fiber fate by the transcriptional regulator Blimp1, Dev Biol 324, 226–235.

    Article  PubMed  CAS  Google Scholar 

  42. Buckley, K., and Kelly, R. B. (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells, J Cell Biol 100, 1284–1294.

    Article  PubMed  CAS  Google Scholar 

  43. Müller, J. S., Jepson, C. D., Laval, S. H., Bushby, K., Straub, V., and Lochmüller, H. (2010) Dok-7 promotes slow muscle integrity as well as neuromuscular junction formation in a zebrafish model of congenital myasthenic syndromes, Hum Mol Genet 19, 1726–1740.

    Article  PubMed  Google Scholar 

  44. Monaco, A. P. (1989) Dystrophin, the protein product of the Duchenne/Becker muscular dystrophy gene, Trends Biochem Sci 14, 412–415.

    Article  PubMed  CAS  Google Scholar 

  45. Bewick, G. S., Nicholson, L. V., Young, C., O’Donnell, E., and Slater, C. R. (1992) Different distributions of dystrophin and related proteins at nerve-muscle junctions, Neuroreport 3, 857–860.

    Article  PubMed  CAS  Google Scholar 

  46. Böhm, S., Jin, H., Hughes, S. M., Roberts, R. G., and Hinits, Y. (2008) Dystrobrevin and dystrophin family gene expression in zebrafish, Gene Expr Patterns 8, 71–78.

    Article  PubMed  Google Scholar 

  47. Barresi, M. J., Stickney, H. L., and Devoto, S. H. (2000) The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity, Development 127, 2189–2199.

    PubMed  CAS  Google Scholar 

  48. Trevarrow, B., Marks, D. L., and Kimmel, C. B. (1990) Organization of hindbrain segments in the zebrafish embryo, Neuron 4, 669–679.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an NIH grant to SHD (R01 HD044929). We thank other labs for sharing protocols, and all members of the Devoto Lab, past and present, who helped to test and refine this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Devoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bird, N.C., Windner, S.E., Devoto, S.H. (2012). Immunocytochemistry to Study Myogenesis in Zebrafish. In: DiMario, J. (eds) Myogenesis. Methods in Molecular Biology, vol 798. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-343-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-343-1_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-342-4

  • Online ISBN: 978-1-61779-343-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics