Skip to main content

Direct Electrical Stimulation of Myogenic Cultures for Analysis of Muscle Fiber Type Control

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 798))

Abstract

Secondary skeletal muscle fiber phenotype is dependent upon depolarization from motor neuron innervation. To study the effects of depolarization on muscle fiber type development, several in vivo and in vitro model systems exist. We have developed a relatively simple-to-use in vitro model system in which differentiated muscle cells are directly electrically stimulated at precise frequencies. This allows for single cell analysis as well as biochemical and molecular analyses of the mechanisms that control skeletal muscle phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zierath JR, and Hawley JA (2004) Skeletal muscle fiber type: Influence on contractile and metabolic properties. PLoS Biol. 2(10):e348

    Article  PubMed  Google Scholar 

  2. Pette D, and Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol. 115:359–372

    PubMed  CAS  Google Scholar 

  3. Pette D, and Vrbova G (1999) What does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve 22:666–677

    Article  PubMed  CAS  Google Scholar 

  4. Condon K. Silbersein L, Blau HM, Thompson WJ (1990) Differentiation of fiber types in aneural musculature of the prenatal rat hindlimb. Dev. Biol. 138:275–295

    Article  PubMed  CAS  Google Scholar 

  5. Jordan T, Li J, Jiang H, and DiMario JX (2003) Repression of slow myosin heavy chain 2 gene expression in fast skeletal muscle fibers by muscarinic acetylcholine receptor and Gαq signaling. J. Cell Biol. 162:843–850

    Article  PubMed  CAS  Google Scholar 

  6. Jiang H, Jordan T, Li J, Li H and DiMario JX (2004) Innervation-dependent and fiber type specific transcriptional regulation of the slow myosin heavy chain 2 promoter in avian skeletal muscle fibers. Dev. Dyn. 231:292–302

    Google Scholar 

  7. Jordan T, Jiang H, Li H and DiMario JX (2005) Regulation of skeletal muscle fiber type and slow myosin heavy chain 2 gene expression by inositol trisphosphate receptor 1. J. Cell Sci. 118:2295–2302

    Article  PubMed  CAS  Google Scholar 

  8. Tothova T, Blaauw B, Pallafacchina G, Rüdiger R, Argentini C, Reggiani C, and Sciaffino S (2006) NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. J. Cell Sci. 119:1604–1611

    Article  PubMed  CAS  Google Scholar 

  9. DiMario JX, and Stockdale FE (1997) Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev. Biol. 188:167–180

    Article  PubMed  CAS  Google Scholar 

  10. DiMario JX, and Funk PE (1999) Protein Kinase C activity regulates Slow Myosin Heavy Chain 2 gene expression in slow lineage skeletal muscle fibers. Dev. Dyn. 216:177–189

    Article  PubMed  CAS  Google Scholar 

  11. Ausoni S, Gorza L, Schiaffino S, Gundersen K, Lømo T (1990) Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J. Neurosci. 10:153–160

    PubMed  CAS  Google Scholar 

  12. Gauthier GF, Burke RE, Lowey S, and Hobbs AW (1983) Myosin Isozymes in normal and cross-reinnervated cat skeletal muscle fibers. J. Cell Biol. 97:756–771

    Article  PubMed  CAS  Google Scholar 

  13. Hoh JFY and Hughes S (1991) Expression of superfast myosin in aneural regenerates of cat jaw muscle. Muscle Nerve 14:316–325

    Article  PubMed  CAS  Google Scholar 

  14. Wagner S, Dorchies OM, Stoeckel H, Warter JM, Poindron P, Takeda K. (2003) Functional maturation of nicotinic acetylcholine receptors as an indicator of murine muscular differentiation in a new nerve-muscle co-culture system. Pflugers Arch. 447:14–22

    Article  PubMed  CAS  Google Scholar 

  15. Crew JR, Falzari K, and DiMario JX (2010) Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation Exp. Cell Res. 316:1039–1049

    Article  PubMed  CAS  Google Scholar 

  16. Thelen MH, Simonides WS, and van Hardeveld C (1997) Electrical stimulation of C2C12 myotubes induces contraction and represses thyroid-hormone-dependent transcription of the fast-type sarcoplasmic-reticulum Ca2+-ATPase gene. Biochem. J. 321:845–848

    PubMed  CAS  Google Scholar 

  17. Kubis HP, Scheibe RJ, Meissner JD, Hornung G, and Gros G (2002) Fast-to-slow transformation and nuclear import/export kinetics of the transcription factor NFATc1 during electrostimulation of rabbit muscle cells in culture. J. Physiol. 541:835–847

    Article  PubMed  CAS  Google Scholar 

  18. Elsner P, Grunner N, and Quistorff (2003) Effects of electrostimulation on glycogenolysis in cultured rat myotubes Pflugers Arch. 447:356–362

    Google Scholar 

  19. M.T. Crow, F.E. Stockdale (1986) Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. Dev. Biol. 113:238–254

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant ARO45939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph X. DiMario .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cavanaugh, E.J., Crew, J.R., DiMario, J.X. (2012). Direct Electrical Stimulation of Myogenic Cultures for Analysis of Muscle Fiber Type Control. In: DiMario, J. (eds) Myogenesis. Methods in Molecular Biology, vol 798. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-343-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-343-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-342-4

  • Online ISBN: 978-1-61779-343-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics