Skip to main content

Resistance Loading and Signaling Assays for Oxidative Stress in Rodent Skeletal Muscle

  • Protocol
  • First Online:
Myogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 798))

  • 4289 Accesses

Abstract

Resistance loading provides an important tool for understanding skeletal muscle responses and adaptations to various perturbations. A model using anesthetized rodents provides the means to control the input parameters carefully, and to measure the output parameters of each muscle contraction. Unilateral models of anesthetized loading also provide the advantage of comparing an unloaded and loaded muscle from the same animal. Voluntary models for resistance loading arguably provide a more “physiological response” but it also introduces more variability in the input parameters, which can be affected by the stimulus used to motivate the animal to exercise. After either acute or chronic periods of muscle loading, the loaded muscles can be removed and various signaling proteins can be determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or enzyme assays. Several assays are described, which provide an indication of downstream markers for oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryan, M. J., Dudash, H. J., Docherty, M., Geronilla, K. B., Baker, B. A., Haff, G. G., Cutlip, R. G., and Alway, S. E. (2008) Aging-Dependent Regulation of Antioxidant Enzymes and Redox Status in Chronically Loaded Rat Dorsiflexor Muscles, J Gerontol A Biol Sci Med Sci 63, 1015–1026.

    Article  PubMed  Google Scholar 

  2. McBride, J. M., Kraemer, W. J., Triplett-McBride, T., and Sebastianelli, W. (1998) Effect of resistance exercise on free radical production, Med. Sci. Sports Exerc. 30, 67–72.

    PubMed  CAS  Google Scholar 

  3. Gianni, P., Jan, K. J., Douglas, M. J., Stuart, P. M., and Tarnopolsky, M. A. (2004) Oxidative stress and the mitochondrial theory of aging in human skeletal muscle, Exp. Gerontol. 39, 1391–1400.

    Article  PubMed  CAS  Google Scholar 

  4. Baker, B. A., Hollander, M. S., Kashon, M. L., and Cutlip, R. G. (2010) Effects of glutathione depletion and age on skeletal muscle performance and morphology following chronic stretch-shortening contraction exposure, Eur. J. Appl. Physiol. 108, 619–630.

    Article  PubMed  CAS  Google Scholar 

  5. Ryan, M. J., Jackson, J. R., and Alway, S. E. (2010) Suppression of oxidative stress by resveratrol after isometric contractions in gastrocnemius muscles of aged mice, J Gerontol A Biol Sci Med Sci 65, 815–831.

    Article  PubMed  Google Scholar 

  6. Harman D. (1956) Aging: a theory based on free radical and radiation chemistry, J Gerontol. 11, 298–300.

    Article  PubMed  CAS  Google Scholar 

  7. Uchiyama, S., Tsukamoto, H., Yoshimura, S., and Tamaki, T. (2006) Relationship between oxidative stress in muscle tissue and weight-lifting-induced muscle damage, Pflugers Archiv-European Journal of Physiology 452, 109–116.

    Article  PubMed  CAS  Google Scholar 

  8. Urso, M. L. and Clarkson, P. M. (2003) Oxidative stress, exercise, and antioxidant supplementation, Toxicology 189, 41–54.

    Article  PubMed  CAS  Google Scholar 

  9. Baker, B. A., Hollander, M. S., Mercer, R. R., Kashon, M. L., and Cutlip, R. G. (2008) Adaptive stretch-shortening contractions: diminished regenerative capacity with aging, Appl Physiol Nutr Metab 33, 1181–1191.

    Article  PubMed  Google Scholar 

  10. Cutlip, R. G., Baker, B. A., Geronilla, K. B., Mercer, R. R., Kashon, M. L., Miller, G. R., Murlasits, Z., and Alway, S. E. (2006) Chronic exposure to stretch-shortening contractions results in skeletal muscle adaptation in young rats and maladaptation in old rats, Appl Physiol Nutr Metab 31, 573–587.

    Article  PubMed  Google Scholar 

  11. Geronilla, K. B., Miller, G. R., Mowrey, K. F., Wu, J. Z., Kashon, M. L., Brumbaugh, K., Reynolds, J., Hubbs, A., and Cutlip, R. G. (2003) Dynamic force responses of skeletal muscle during stretch-shortening cycles, Eur J Appl Physiol 90, 144–153.

    Article  PubMed  CAS  Google Scholar 

  12. Cutlip, R. G., Baker, B. A., Hollander, M., and Ensey, J. (2009) Injury and adaptive mechanisms in skeletal muscle, J Electromyogr Kinesiol 19, 358–372.

    Article  PubMed  Google Scholar 

  13. Cutlip, R. G., Geronilla, K. B., Baker, B. A., Kashon, M. L., Miller, G. R., and Schopper, A. W. (2004) Impact of muscle length during stretch-shortening contractions on real-time and temporal muscle performance measures in rats in vivo, J Appl Physiol 96, 507–516.

    Article  PubMed  CAS  Google Scholar 

  14. Gosselin, L. E. and Burton, H. (2002) Impact of initial muscle length on force deficit following lengthening contractions in mammalian skeletal muscle, Muscle Nerve 25, 822–827.

    Article  PubMed  Google Scholar 

  15. Cutlip, R. G., Baker, B. A., Geronilla, K. B., Kashon, M. L., and Wu, J. Z. (2007) The influence of velocity of stretch-shortening contractions on muscle performance during chronic exposure: age effects, Appl Physiol Nutr Metab 32, 443–453.

    Article  PubMed  Google Scholar 

  16. Baker, B. A., Mercer, R. R., Geronilla, K. B., Kashon, M. L., Miller, G. R., and Cutlip, R. G. (2007) Impact of repetition number on muscle performance and histological response, Med Sci Sports Exerc 39, 1275–1281.

    Article  PubMed  Google Scholar 

  17. Cutlip, R. G., Geronilla, K. B., Baker, B. A., Chetlin, R. D., Hover, I., Kashon, M. L., and Wu, J. Z. (2005) Impact of stretch-shortening cycle rest interval on in vivo muscle performance, Med Sci Sports Exerc 37, 1345–1355.

    Article  PubMed  Google Scholar 

  18. McCully, K. K. (1986) Exercise-induced injury to skeletal muscle, Fed. Proc 45, 2933–2936.

    PubMed  CAS  Google Scholar 

  19. Lieber, R. L., Woodburn, T. M., and Friden, J. (1991) Muscle damage induced by eccentric contractions of 25% strain, J Appl Physiol 70, 2498–2507.

    PubMed  CAS  Google Scholar 

  20. Brooks, S. V. and Faulkner, J. A. (1990) Contraction-induced injury: recovery of skeletal muscles in young and old mice, Am J Physiol 258, C436–C442.

    PubMed  CAS  Google Scholar 

  21. Koh, T. J. and Brooks, S. V. (2001) Lengthening contractions are not required to induce protection from contraction-induced muscle injury, Am J Physiol Regul Integr Comp Physiol 281, R155–R161.

    PubMed  CAS  Google Scholar 

  22. Figueiredo, P. A., Powers, S. K., Ferreira, R. M., Appell, H. J., and Duarte, J. A. (2009) Aging impairs skeletal muscle mitochondrial bioenergetic function, J Gerontol A Biol Sci Med Sci 64, 21–33.

    Article  PubMed  Google Scholar 

  23. Ji, L. L., Leeuwenburgh, C., Leichtweis, S., Gore, M., Fiebig, R., Hollander, J., and Bejma, J. (1998) Oxidative stress and aging. Role of exercise and its influences on antioxidant systems, Ann. N. Y. Acad. Sci. 854, 102–117.

    Article  PubMed  CAS  Google Scholar 

  24. Fulle, S., Protasi, F., Di Tano, G., Pietrangelo, T., Beltramin, A., Boncompagni, S., Vecchiet, L., and Fano, G. (2004) The contribution of reactive oxygen species to sarcopenia and muscle ageing, Exp Gerontol 39, 17–24.

    Article  PubMed  CAS  Google Scholar 

  25. McArdle, A. and Jackson, M. J. (2000) Exercise, oxidative stress and ageing, J Anat. 197 Pt 4, 539–541.

    Article  PubMed  Google Scholar 

  26. Reid, M. B. (2001) Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don’t, J Appl Physiol 90, 724–731.

    Article  PubMed  CAS  Google Scholar 

  27. Bejma, J. and Ji, L. L. (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle, J Appl Physiol 87, 465–470.

    PubMed  CAS  Google Scholar 

  28. Houston, M., Estevez, A., Chumley, P., Aslan, M., Marklund, S., Parks, D. A., and Freeman, B. A. (1999) Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling, J Biol Chem 274, 4985–4994.

    Article  PubMed  CAS  Google Scholar 

  29. Hellsten, Y., Hansson, H. A., Johnson, L., Frandsen, U., and Sjodin, B. (1996) Increased expression of xanthine oxidase and insulin-like growth factor I (IGF-I) immunoreactivity in skeletal muscle after strenuous exercise in humans, Acta Physiol Scand 157, 191–197.

    Article  PubMed  CAS  Google Scholar 

  30. Vina, J., Gimeno, A., Sastre, J., Desco, C., Asensi, M., Pallardo, F. V., Cuesta, A., Ferrero, J. A., Terada, L. S., and Repine, J. E. (2000) Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol, IUBMB Life 49, 539–544.

    Article  PubMed  CAS  Google Scholar 

  31. Sachdev, S. and Davies, K. J. A. (2008) Production, detection, and adaptive responses to free radicals in exercise, Free Radic Biol Med 44, 215–223.

    Article  PubMed  CAS  Google Scholar 

  32. Kryger, A. I. and Andersen, J. L. (2007) Resistance training in the oldest old: consequences for muscle strength, fiber types, fiber size, and MHC isoforms, Scand J Med. Sci. Sports 17, 422–430.

    Article  PubMed  CAS  Google Scholar 

  33. Roman, W. J., Fleckenstein, J., Straygundersen, J., Alway, S. E., Peshock, R., and Gonyea, W. J. (1993) Adaptations in the Elbow Flexors of Elderly Males After Heavy-Resistance Training, J Appl Physiol 74, 750–754.

    PubMed  CAS  Google Scholar 

  34. Muller, F. L., Song, W., Liu, Y. H., Chaudhuri, A., Pieke-Dahl, S., Strong, R., Huang, T. T., Epstein, C. J., Roberts, L. J., Csete, M., Faulkner, J. A., and Van Remmen, H. (2006) Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy, Free Radic. Biol Med. 40, 1993–2004.

    Article  PubMed  CAS  Google Scholar 

  35. Cutlip, R. G., Stauber, W. T., Willison, R. H., McIntosh, T. A., and Means, K. H. (1997) Dynamometer for rat plantar flexor muscles in vivo, Med. Biol Eng Comput. 35, 540–543.

    Article  PubMed  CAS  Google Scholar 

  36. Murlasits, Z., Cutlip, R. G., Geronilla, K. B., Rao, K. M., Wonderlin, W. F., and Alway, S. E. (2006) Resistance training increases heat shock protein levels in skeletal muscle of young and old rats, Exp Gerontol 41, 398–406.

    Article  PubMed  CAS  Google Scholar 

  37. Baker, B. A., Rao, K. M., Mercer, R. R., Geronilla, K. B., Kashon, M. L., Miller, G. R., and Cutlip, R. G. (2006) Quantitative histology and MGF gene expression in rats following SSC exercise in vivo, Med Sci Sports Exerc 38, 463–471.

    Article  PubMed  CAS  Google Scholar 

  38. Warren, G. L., Lowe, D. A., and Armstrong, R. B. (1999) Measurement tools used in the study of eccentric contraction-induced injury, Sports Med 27, 43–59.

    Article  PubMed  CAS  Google Scholar 

  39. Warren, G. L., Hayes, D. A., Lowe, D. A., Williams, J. H., and Armstrong, R. B. (1994) Eccentric contraction-induced injury in normal and hindlimb-suspended mouse soleus and EDL muscles, J Appl Physiol 77, 1421–1430.

    PubMed  CAS  Google Scholar 

  40. Warren, G. L., Lowe, D. A., Hayes, D. A., Karwoski, C. J., Prior, B. M., and Armstrong, R. B. (1993) Excitation failure in eccentric contraction-induced injury of mouse soleus muscle, J Physiol 468, 487–499.

    PubMed  CAS  Google Scholar 

  41. Ryan, M. J., Dudash, H. J., Docherty, M., Geronilla, K. B., Baker, B. A., Haff, G. G., Cutlip, R. G., and Alway, S. E. (2010) Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes, and postive muscle work in chronically loaded muscles of aged rats, Exp. Gerontol. 45(11), 882–895.

    Article  PubMed  CAS  Google Scholar 

  42. Davis, J., Kaufman, K. R., and Lieber, R. L. (2003) Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle, J Biomech 36, 505–512.

    Article  PubMed  Google Scholar 

  43. Willems, M. E. and Stauber, W. T. (1999) Isometric and concentric performance of electrically stimulated ankle plantar flexor muscles in intact rat, Exp Physiol 84, 379–389.

    Article  PubMed  CAS  Google Scholar 

  44. Baker, B. A. and Cutlip, R. G. (2010) Skeletal muscle injury versus adaptation with aging: novel insights on perplexing paradigms, Exerc Sport Sci Rev 38, 10–16.

    Article  PubMed  Google Scholar 

  45. Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues, Anal. Biochem 27, 502–522.

    Article  PubMed  CAS  Google Scholar 

  46. Afzal, M., Afzal, A., Jones, A., and Armstrong, D. (2002) A rapid method for the quantification of GSH and GSSG in biological samples, Methods Mol Biol 186, 117–122.

    PubMed  CAS  Google Scholar 

  47. Zhou, M., Diwu, Z., Panchuk-Voloshina, N., and Haugland, R. P. (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases, Anal. Biochem 253, 162–168.

    Article  PubMed  CAS  Google Scholar 

  48. Yin, B., Whyatt, R. M., Perera, F. P., Randall, M. C., Cooper, T. B., and Santella, R. M. (1995) Determination of 8-hydroxydeoxyguanosine by an immunoaffinity chromatography-monoclonal antibody-based ELISA, Free Radic Biol Med 18, 1023–1032.

    Article  PubMed  CAS  Google Scholar 

  49. Chiou, C. C., Chang, P. Y., Chan, E. C., Wu, T. L., Tsao, K. C., and Wu, J. T. (2003) Urinary 8-hydroxydeoxyguanosine and its analogs as DNA marker of oxidative stress: development of an ELISA and measurement in both bladder and prostate cancers, Clin Chim. Acta 334, 87–94.

    Article  PubMed  CAS  Google Scholar 

  50. Senapathy, P., Ali, M. A., and Jacob, M. T. (1985) Mechanism of coupling periodate-oxidized nucleosides to proteins, FEBS Lett 190, 337–341.

    Article  PubMed  CAS  Google Scholar 

  51. Esterbauer, H., Schaur, R. J., and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes, Free Radic Biol Med 11, 81–128.

    Article  PubMed  CAS  Google Scholar 

  52. Gerard-Monnier, D., Erdelmeier, I., Regnard, K., Moze-Henry, N., Yadan, J. C., and Chaudiere, J. (1998) Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation, Chem Res Toxicol 11, 1176–1183.

    Article  PubMed  CAS  Google Scholar 

  53. Johansson, L. H. and Borg, L. A. (1988) A spectrophotometric method for determination of catalase activity in small tissue samples, Anal. Biochem 174, 331–336.

    Article  PubMed  CAS  Google Scholar 

  54. Wheeler, C. R., Salzman, J. A., Elsayed, N. M., Omaye, S. T., and Korte, D. W., Jr. (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity, Anal. Biochem 184, 193–199.

    Article  PubMed  CAS  Google Scholar 

  55. Spitz, D. R. and Oberley, L. W. (2001) Measurement of MnSOD and CuZnSOD Activity in Mammalian Tissue Homogenates, Current Protocols in Toxicology 7.5, 1–11.

    Google Scholar 

  56. Beauchamp, C. and Fridovich, I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem 44, 276–287.

    Article  PubMed  CAS  Google Scholar 

  57. Weisiger, R. A. and Fridovich, I. (1973) Superoxide dismutase. Organelle specificity, J Biol Chem 248, 3582–3592.

    PubMed  CAS  Google Scholar 

  58. Warren, G. L., Ingalls, C. P., Shah, S. J., and Armstrong, R. B. (1999) Uncoupling of in vivo torque production from EMG in mouse muscles injured by eccentric contractions, J Physiol 515 ( Pt 2), 609–619.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen E. Alway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alway, S.E., Cutlip, R.G. (2012). Resistance Loading and Signaling Assays for Oxidative Stress in Rodent Skeletal Muscle. In: DiMario, J. (eds) Myogenesis. Methods in Molecular Biology, vol 798. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-343-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-343-1_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-342-4

  • Online ISBN: 978-1-61779-343-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics