Skip to main content

Oncolytic Measles Virus Retargeting by Ligand Display

  • Protocol
  • First Online:
Oncolytic Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 797))

Abstract

Despite significant advances in recent years, treatment of metastatic malignancies remains a significant challenge. There is an urgent need for development of novel therapeutic approaches. Virotherapy approaches have considerable potential, and among them measles virus (MV) vaccine strains have emerged as a promising oncolytic platform. Retargeted MV strains deriving from the Edmonston vaccine lineage (MV-Edm) have shown comparable antitumor efficacy to unmodified strains against receptor expressing tumor cells with improved therapeutic index. Here, we describe the construction, rescue, amplification, and titration of fully retargeted MV-Edm derivatives displaying tumor specific receptor binding ligands on the viral surface in combination with H protein CD46 and SLAM entry ablating mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng, K. W., TenEyck, C. J., Galanis, E., Kalli, K. R., Hartmann, L. C., and Russell, S. J. (2002) Intraperitoneal therapy of ovarian cancer using an engineered measles virus, Cancer research 62, 4656–4662.

    CAS  PubMed  Google Scholar 

  2. Hasegawa, K., Pham, L., O’Connor, M. K., Federspiel, M. J., Russell, S. J., and Peng, K. W. (2006) Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter, Clin Cancer Res 12, 1868–1875.

    Article  CAS  Google Scholar 

  3. Phuong, L. K., Allen, C., Peng, K. W., Giannini, C., Greiner, S., TenEyck, C. J., Mishra, P. K., Macura, S. I., Russell, S. J., and Galanis, E. C. (2003) Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme, Cancer research 63, 2462–2469.

    CAS  PubMed  Google Scholar 

  4. Peng, K. W., Ahmann, G. J., Pham, L., Greipp, P. R., Cattaneo, R., and Russell, S. J. (2001) Systemic therapy of myeloma xenografts by an attenuated measles virus, Blood 98, 2002–2007.

    Article  CAS  Google Scholar 

  5. Dingli, D., Peng, K. W., Harvey, M. E., Greipp, P. R., O’Connor, M. K., Cattaneo, R., Morris, J. C., and Russell, S. J. (2004) Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter, Blood 103, 1641–1646.

    Article  CAS  Google Scholar 

  6. Grote, D., Russell, S. J., Cornu, T. I., Cattaneo, R., Vile, R., Poland, G. A., and Fielding, A. K. (2001) Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice, Blood 97, 3746–3754.

    Article  CAS  Google Scholar 

  7. McDonald, C. J., Erlichman, C., Ingle, J. N., Rosales, G. A., Allen, C., Greiner, S. M., Harvey, M. E., Zollman, P. J., Russell, S. J., and Galanis, E. (2006) A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer, Breast cancer research and treatment 99, 177–184.

    Article  CAS  Google Scholar 

  8. Iankov, I. D., Msaouel, P., Allen, C., Federspiel, M. J., Bulur, P. A., Dietz, A. B., Gastineau, D., Ikeda, Y., Ingle, J. N., Russell, S. J., and Galanis, E. (2009) Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model, Breast cancer research and treatment 2010 Aug;122(3), 745–54.

    Article  Google Scholar 

  9. Msaouel, P., Iankov, I. D., Allen, C., Morris, J. C., von Messling, V., Cattaneo, R., Koutsilieris, M., Russell, S. J., and Galanis, E. (2009) Engineered measles virus as a novel oncolytic therapy against prostate cancer, The Prostate 69, 82–91.

    Article  CAS  Google Scholar 

  10. Msaouel, P., Iankov, I. D., Allen, C., Aderca, I., Federspiel, M. J., Tindall, D. J., Morris, J. C., Koutsilieris, M., Russell, S. J., and Galanis, E. (2009) Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter, Mol Ther 17, 2041–2048.

    Article  CAS  Google Scholar 

  11. Blechacz, B., Splinter, P. L., Greiner, S., Myers, R., Peng, K. W., Federspiel, M. J., Russell, S. J., and LaRusso, N. F. (2006) Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma, Hepatology (Baltimore, Md) 44, 1465–1477.

    Article  CAS  Google Scholar 

  12. Dorig, R. E., Marcil, A., Chopra, A., and Richardson, C. D. (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain), Cell 75, 295–305.

    Article  CAS  Google Scholar 

  13. Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C., and Gerlier, D. (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus, Journal of virology 67, 6025–6032.

    Article  CAS  Google Scholar 

  14. Tatsuo, H., Ono, N., Tanaka, K., and Yanagi, Y. (2000) SLAM (CDw150) is a cellular receptor for measles virus, Nature 406, 893–897.

    Article  CAS  Google Scholar 

  15. Hahm, B., Arbour, N., Naniche, D., Homann, D., Manchester, M., and Oldstone, M. B. (2003) Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule, Journal of virology 77, 3505–3515.

    Article  CAS  Google Scholar 

  16. Schneider-Schaulies, S., Bieback, K., Avota, E., Klagge, I., and ter Meulen, V. (2002) Regulation of gene expression in lymphocytes and antigen-presenting cells by measles virus: consequences for immunomodulation, Journal of molecular medicine (Berlin, Germany) 80, 73–85.

    Article  CAS  Google Scholar 

  17. Yanagi, Y., Takeda, M., and Ohno, S. (2006) Measles virus: cellular receptors, tropism and pathogenesis, The Journal of general virology 87, 2767–2779.

    Article  CAS  Google Scholar 

  18. Nussbaum, O., Broder, C. C., Moss, B., Stern, L. B., Rozenblatt, S., and Berger, E. A. (1995) Functional and structural interactions between measles virus hemagglutinin and CD46, Journal of virology 69, 3341–3349.

    Article  CAS  Google Scholar 

  19. Allen, C., Paraskevakou, G., Iankov, I., Giannini, C., Schroeder, M., Sarkaria, J., Schroeder, M., Puri, R. K., Russell, S. J., and Galanis, E. (2008) Interleukin-13 displaying retargeted oncolytic measles virus strains have significant activity against gliomas with improved specificity, Mol Ther 16, 1556–1564.

    Article  CAS  Google Scholar 

  20. Nakamura, T., Peng, K. W., Harvey, M., Greiner, S., Lorimer, I. A., James, C. D., and Russell, S. J. (2005) Rescue and propagation of fully retargeted oncolytic measles viruses, Nature biotechnology 23, 209–214.

    Article  CAS  Google Scholar 

  21. Paraskevakou, G., Allen, C., Nakamura, T., Zollman, P., James, C. D., Peng, K. W., Schroeder, M., Russell, S. J., and Galanis, E. (2007) Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas, Mol Ther 15, 677–686.

    Article  CAS  Google Scholar 

  22. Allen, C., Vongpunsawad, S., Nakamura, T., James, C. D., Schroeder, M., Cattaneo, R., Giannini, C., Krempski, J., Peng, K. W., Goble, J. M., Uhm, J. H., Russell, S. J., and Galanis, E. (2006) Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity, Cancer research 66, 11840–11850.

    Article  CAS  Google Scholar 

  23. Hasegawa, K., Nakamura, T., Harvey, M., Ikeda, Y., Oberg, A., Figini, M., Canevari, S., Hartmann, L. C., and Peng, K. W. (2006) The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer, Clin Cancer Res 12, 6170–6178.

    Article  CAS  Google Scholar 

  24. Jing, Y., Tong, C., Zhang, J., Nakamura, T., Iankov, I., Russell, S. J., and Merchan, J. R. (2009) Tumor and vascular targeting of a novel oncolytic measles virus retargeted against the urokinase receptor, Cancer research 69, 1459–1468.

    Article  CAS  Google Scholar 

  25. Hummel, H. D., Kuntz, G., Russell, S. J., Nakamura, T., Greiner, A., Einsele, H., and Topp, M. S. (2009) Genetically engineered attenuated measles virus specifically infects and kills primary multiple myeloma cells, The Journal of general virology 90, 693–701.

    Article  CAS  Google Scholar 

  26. Hasegawa, K., Hu, C., Nakamura, T., Marks, J. D., Russell, S. J., and Peng, K. W. (2007) Affinity thresholds for membrane fusion triggering by viral glycoproteins, Journal of virology 81, 13149–13157.

    Article  CAS  Google Scholar 

  27. Ungerechts, G., Springfeld, C., Frenzke, M. E., Lampe, J., Johnston, P. B., Parker, W. B., Sorscher, E. J., and Cattaneo, R. (2007) Lymphoma chemovirotherapy: CD20-targeted and convertase-armed measles virus can synergize with fludarabine, Cancer research 67, 10939–10947.

    Article  CAS  Google Scholar 

  28. Hallak, L. K., Merchan, J. R., Storgard, C. M., Loftus, J. C., and Russell, S. J. (2005) Targeted measles virus vector displaying echistatin infects endothelial cells via alpha(v)beta3 and leads to tumor regression, Cancer research 65, 5292–5300.

    Article  CAS  Google Scholar 

  29. Springfeld, C., von Messling, V., Frenzke, M., Ungerechts, G., Buchholz, C. J., and Cattaneo, R. (2006) Oncolytic efficacy and enhanced safety of measles virus activated by tumor-secreted matrix metalloproteinases, Cancer research 66, 7694–7700.

    Article  CAS  Google Scholar 

  30. Msaouel, P., Dispenzieri, A., and Galanis, E. (2009) Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview, Current opinion in molecular therapeutics 11, 43–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vongpunsawad, S., Oezgun, N., Braun, W., and Cattaneo, R. (2004) Selectively receptor-blind measles viruses: Identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model, Journal of virology 78, 302–313.

    Article  CAS  Google Scholar 

  32. Nakamura, T., Peng, K. W., Vongpunsawad, S., Harvey, M., Mizuguchi, H., Hayakawa, T., Cattaneo, R., and Russell, S. J. (2004) Antibody-targeted cell fusion, Nature biotechnology 22, 331–336.

    Article  CAS  Google Scholar 

  33. Radecke, F., Spielhofer, P., Schneider, H., Kaelin, K., Huber, M., Dotsch, C., Christiansen, G., and Billeter, M. A. (1995) Rescue of measles viruses from cloned DNA, The EMBO journal 14, 5773–5784.

    Article  CAS  Google Scholar 

  34. Hadac, E. M., Peng, K. W., Nakamura, T., and Russell, S. J. (2004) Reengineering paramyxovirus tropism, Virology 329, 217–225.

    Article  CAS  Google Scholar 

  35. Douglas, J. T., Miller, C. R., Kim, M., Dmitriev, I., Mikheeva, G., Krasnykh, V., and Curiel, D. T. (1999) A system for the propagation of adenoviral vectors with genetically modified receptor specificities, Nature biotechnology 17, 470–475.

    Article  CAS  Google Scholar 

  36. Kolakofsky, D., Pelet, T., Garcin, D., Hausmann, S., Curran, J., and Roux, L. (1998) Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited, Journal of virology 72, 891–899.

    Article  CAS  Google Scholar 

  37. Peng, K. W., Donovan, K. A., Schneider, U., Cattaneo, R., Lust, J., and Russell, S. J. (2003) Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker, Blood 101, 2557–2562.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evanthia Galanis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Msaouel, P., Iankov, I.D., Allen, C., Russell, S.J., Galanis, E. (2012). Oncolytic Measles Virus Retargeting by Ligand Display. In: Kirn, D., Liu, TC., Thorne, S. (eds) Oncolytic Viruses. Methods in Molecular Biology, vol 797. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-340-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-340-0_11

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-339-4

  • Online ISBN: 978-1-61779-340-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics