Kinase Inhibitor Selectivity Profiling Using Differential Scanning Fluorimetry

  • Oleg FedorovEmail author
  • Frank H. Niesen
  • Stefan Knapp
Part of the Methods in Molecular Biology book series (MIMB, volume 795)


Fast, robust, and inexpensive screening methods are the heart of drug discovery processes. Moreover, it is useful to have access to several established assay formats, for validation purposes. If a targeted protein is an enzyme, the logical and widely used approach is the direct measurement of the effect of the added ligands on its activity. A variety of enzymatic assay formats have been successfully applied for inhibitor screening of protein kinases. However, enzymatic assays require an active enzyme with a known substrate and often time-consuming assay optimization. Several alternative approaches have been recently developed that detect binding of ligands to proteins. This chapter overviews and provides the experimental protocol of the successful application of differential scanning fluorimetry (DSF) in our laboratory for fast and robust screening of medium-sized (<10,000) inhibitor libraries. DSF monitors the thermal stabilization of the native protein structure upon ligand binding. It allows selectivity profiling of any protein kinase without prior knowledge of either substrate or activity of the kinase under investigation. Comparative studies revealed that generated data is highly reproducible and correlates well with the results from other ligand binding methodologies, direct binding constants as well as enzymatic assays.

Key words

Kinase Protein stability Inhibitor selectivity Compound screening Differential scanning fluorimetry 



The Structural Genomics Consortium is a registered charity (number 1097737) that receives funds from the Canadian Institutes for Health Research, the Canadian Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Foundation, the Ontario Innovation Trust, the Ontario Ministry for Research and Innovation, Merck & Co., Inc., the Novartis Research Foundation, the Swedish Agency for Innovation Systems, the Swedish Foundation for Strategic Research and the Wellcome Trust.


  1. 1.
    Goldstein, D. M., Gray, N. S., and Zarrinkar, P. P. (2008) High-throughput kinase profiling as a platform for drug discovery. Nat. Rev. Drug Discov. 7, 391–397.PubMedCrossRefGoogle Scholar
  2. 2.
    Bamborough, P., Drewry, D., Harper, G., Smith, G. K., and Schneider, K. (2008) Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J. Med. Chem. 51, 7898–7914.PubMedCrossRefGoogle Scholar
  3. 3.
    Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., Chan, K. W., Ciceri, P., Davis, M. I., Edeen, P. T., Faraoni, R., Floyd, M., Hunt, J. P., Lockhart, D. J., Milanov, Z. V., Morrison, M. J., Pallares, G., Patel, H. K., Pritchard, S., Wodicka, L. M., and Zarrinkar, P. P. (2008) A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132.PubMedCrossRefGoogle Scholar
  4. 4.
    Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., Klevernic, I., Arthur, J. S., Alessi, D. R., and Cohen, P. (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J. 408, 297–315.PubMedCrossRefGoogle Scholar
  5. 5.
    Chene, P. (2008) Challenges in design of biochemical assays for the identification of small molecules to target multiple conformations of protein kinases. Drug. Discov. Today 13, 522–529.PubMedCrossRefGoogle Scholar
  6. 6.
    Fabian, M. A., Biggs, W. H., 3rd, Treiber, D. K., Atteridge, C. E., Azimioara, M. D., Benedetti, M. G., Carter, T. A., Ciceri, P., Edeen, P. T., Floyd, M., Ford, J. M., Galvin, M., Gerlach, J. L., Grotzfeld, R. M., Herrgard, S., Insko, D. E., Insko, M. A., Lai, A. G., Lelias, J. M., Mehta, S. A., Milanov, Z. V., Velasco, A. M., Wodicka, L. M., Patel, H. K., Zarrinkar, P. P., and Lockhart, D. J. (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336.PubMedCrossRefGoogle Scholar
  7. 7.
    Bantscheff, M., Eberhard, D., Abraham, Y., Bastuck, S., Boesche, M., Hobson, S., Mathieson, T., Perrin, J., Raida, M., Rau, C., Reader, V., Sweetman, G., Bauer, A., Bouwmeester, T., Hopf, C., Kruse, U., Neubauer, G., Ramsden, N., Rick, J., Kuster, B., and Drewes, G. (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044.PubMedCrossRefGoogle Scholar
  8. 8.
    Fedorov, O., Marsden, B., Pogacic, V., Rellos, P., Muller, S., Bullock, A. N., Schwaller, J., Sundstrom, M., and Knapp, S. (2007) A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc. Natl. Acad. Sci. USA 104, 20523–20528.PubMedCrossRefGoogle Scholar
  9. 9.
    Niesen, F. H., Berglund, H., and Vedadi, M. (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221.PubMedCrossRefGoogle Scholar
  10. 10.
    Bullock, A. N., Debreczeni, J. E., Fedorov, O. Y., Nelson, A., Marsden, B. D., and Knapp, S. (2005) Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase. J. Med. Chem. 48, 7604–7614.PubMedCrossRefGoogle Scholar
  11. 11.
    Matulis, D., Kranz, J. K., Salemme, F. R., and Todd, M. J. (2005) Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry 44, 5258–5266.PubMedCrossRefGoogle Scholar
  12. 12.
    Pantoliano, M. W., Petrella, E. C., Kwasnoski, J. D., Lobanov, V. S., Myslik, J., Graf, E., Carver, T., Asel, E., Springer, B. A., Lane, P., and Salemme, F. R. (2001) High-density ­miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 6, 429–440.PubMedCrossRefGoogle Scholar
  13. 13.
    Pogacic, V., Bullock, A. N., Fedorov, O., Filippakopoulos, P., Gasser, C., Biondi, A., Meyer-Monard, S., Knapp, S., and Schwaller, J. (2007) Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res. 67, 6916–6924.PubMedCrossRefGoogle Scholar
  14. 14.
    Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and ­predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Structural Genomics ConsortiumOxford UniversityOxfordUK

Personalised recommendations