Skip to main content

Measuring PI3K Lipid Kinase Activity

  • Protocol
  • First Online:
Kinase Inhibitors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 795))

Abstract

Class IA phosphoinositide-3 kinases (PI3Ks) signaling has recently emerged as a key element in cancer development because of its ability to trigger a complex panoply of cellular responses controlling survival and proliferation. Many cancers show inappropriately activated PI3K pathway, and tumors with high PI3K activity are frequently resistant to traditional chemotherapy. Indeed, preclinical studies demonstrated a prominent role for the PI3K pathway in cancer cell survival and growth, thus validating PI3K as a potential drug target in cancer. The emerging interest in inhibiting PI3Ks in cancer have prompted the aggressive development of new selective PI3K pathway inhibitors as cancer therapy, and many of these molecules are currently in early-phase clinical trials. In this chapter, we describe methods to measure the PI3K lipid kinase activity in vitro, which is the standard procedure to test the efficacy of inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engelman, J. A., Luo, J., and Cantley, L. C. (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619.

    Article  PubMed  CAS  Google Scholar 

  2. Hirsch, E., Ciraolo, E., Ghigo, A., and Costa, C. (2008) Taming the PI3K team to hold inflammation and cancer at bay, Pharmacology & therapeutics 118, 192–205.

    Article  CAS  Google Scholar 

  3. Nadal, E., and Olavarria, E. (2004) Imatinib mesylate (Gleevec/Glivec) a molecular-targeted therapy for chronic myeloid leukaemia and other malignancies. International journal of clinical practice 58, 511–516.

    Article  PubMed  CAS  Google Scholar 

  4. Helfrich, B. A., Raben, D., Varella-Garcia, M., Gustafson, D., Chan, D. C., Bemis, L., Coldren, C., Baron, A., Zeng, C., Franklin, W. A., Hirsch, F. R., Gazdar, A., Minna, J., and Bunn, P. A., Jr. (2006) Antitumor activity of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) in non-small cell lung cancer cell lines correlates with gene copy number and EGFR mutations but not EGFR protein levels. Clin. Cancer Res. 12, 7117–7125.

    Article  PubMed  CAS  Google Scholar 

  5. McCubrey, J. A., Steelman, L. S., Abrams, S. L., Lee, J. T., Chang, F., Bertrand, F. E., Navolanic, P. M., Terrian, D. M., Franklin, R. A., D’Assoro, A. B., Salisbury, J. L., Mazzarino, M. C., Stivala, F., and Libra, M. (2006) Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Advances in enzyme regulation 46, 249–279.

    Article  PubMed  CAS  Google Scholar 

  6. Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., Willson, J. K., Markowitz, S., Kinzler, K. W., Vogelstein, B., and Velculescu, V. E. (2004) High frequency of mutations of the PIK3CA gene in human ­cancers. Science 304, 554.

    Article  PubMed  CAS  Google Scholar 

  7. Engelman, J. A. (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562.

    Article  PubMed  CAS  Google Scholar 

  8. Geering, B., Cutillas, P. R., Nock, G., Gharbi, S. I., and Vanhaesebroeck, B. (2007) Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc. Natl. Acad. Sci.USA 104, 7809–7814.

    Google Scholar 

  9. Vanhaesebroeck, B., and Waterfield, M. D. (1999) Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res. 253, 239–254.

    Article  PubMed  CAS  Google Scholar 

  10. Kahn, C. R., White, M. F., Shoelson, S. E., Backer, J. M., Araki, E., Cheatham, B., Csermely, P., Folli, F., Goldstein, B. J., Huertas, P., and et al. (1993) The insulin receptor and its substrate: molecular determinants of early events in insulin action. Rec. Prog. Horm. Res. 48, 291–339.

    PubMed  CAS  Google Scholar 

  11. Beeton, C. A., Chance, E. M., Foukas, L. C., and Shepherd, P. R. (2000) Comparison of the kinetic properties of the lipid- and protein-kinase activities of the p110alpha and p110beta catalytic subunits of class-Ia phosphoinositide 3-kinases. Biochem J.350 Pt 2, 353–359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Hirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ciraolo, E., Perino, A., Hirsch, E. (2012). Measuring PI3K Lipid Kinase Activity. In: Kuster, B. (eds) Kinase Inhibitors. Methods in Molecular Biology, vol 795. Humana Press. https://doi.org/10.1007/978-1-61779-337-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-337-0_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-336-3

  • Online ISBN: 978-1-61779-337-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics