Skip to main content

Allosteric Mechanisms of G Protein-Coupled Receptor Signaling: A Structural Perspective

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 796))

Abstract

G protein-Coupled Receptors (GPCRs) use a complex series of intramolecular conformational changes to couple agonist binding to the binding and activation of cognate heterotrimeric G protein (Gαβγ). The mechanisms underlying this long-range activation have been identified using a variety of biochemical and structural approaches and have primarily used visual signal transduction via the GPCR rhodopsin and cognate heterotrimeric G protein transducin (Gt) as a model system. In this chapter, we review the methods that have revealed allosteric signaling through rhodopsin and transducin. These methods can be applied to a variety of GPCR-mediated signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheerer, P., Park, J. H., Hildebrand, P. W., Kim, Y. J., Krauss, N., Choe, H. W., Hofmann, K. P., and Ernst, O. P. (2008) Crystal structure of opsin in its G-protein-interacting conformation, Nature 455, 497–502.

    Article  PubMed  CAS  Google Scholar 

  2. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W., and Ernst, O. P. (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin, Nature 454, 183–187.

    Article  PubMed  CAS  Google Scholar 

  3. Hamm, H. E., Deretic, D., Arendt, A., Hargrave, P. A., Koenig, B., and Hofmann, K. P. (1988) Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit, Science 241, 832–835.

    Article  PubMed  CAS  Google Scholar 

  4. Noel, J. P., Hamm, H. E., and Sigler, P. B. (1993) The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S, Nature 366, 654–663.

    Article  PubMed  CAS  Google Scholar 

  5. Lambright, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E., and Sigler, P. B. (1996) The 2.0 angstrom crystal structure of a heterotrimeric G protein, Nature 379, 311–319.

    Article  PubMed  CAS  Google Scholar 

  6. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994) GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4, Nature 372, 276–279.

    Article  PubMed  CAS  Google Scholar 

  7. Van Eps, N., Oldham, W. M., Hamm, H. E., and Hubbell, W. L. (2006) Structural and dynamical changes in an alpha-subunit of a heterotrimeric G protein along the activation pathway, Proc Natl Acad Sci U S A 103, 16194–16199.

    Article  PubMed  CAS  Google Scholar 

  8. Millar, R. P., and Newton, C. L. (2010) The year in G protein-coupled receptor research, Mol Endocrinol 24, 261–274.

    Article  PubMed  CAS  Google Scholar 

  9. Hargrave, P. A., McDowell, J. H., Curtis, D. R., Wang, J. K., Juszczak, E., Fong, S. L., Rao, J. K., and Argos, P. (1983) The structure of bovine rhodopsin, Biophys Struct Mech 9, 235–244.

    Article  PubMed  CAS  Google Scholar 

  10. Schertler, G. F., Villa, C., and Henderson, R. (1993) Projection structure of rhodopsin, Nature 362, 770–772.

    Article  PubMed  CAS  Google Scholar 

  11. Sakmar, T. P., Franke, R. R., and Khorana, H. G. (1991) The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa, Proc Natl Acad Sci U S A 88, 3079–3083.

    Article  PubMed  CAS  Google Scholar 

  12. Karnik, S. S., Sakmar, T. P., Chen, H. B., and Khorana, H. G. (1988) Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin, Proc Natl Acad Sci U S A 85, 8459–8463.

    Article  PubMed  CAS  Google Scholar 

  13. Ballesteros, J. A., Jensen, A. D., Liapakis, G., Rasmussen, S. G., Shi, L., Gether, U., and Javitch, J. A. (2001) Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6, J Biol Chem 276, 29171–29177.

    Article  PubMed  CAS  Google Scholar 

  14. Shi, L., Liapakis, G., Xu, R., Guarnieri, F., Ballesteros, J. A., and Javitch, J. A. (2002) Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch, J Biol Chem 277, 40989–40996.

    Article  PubMed  CAS  Google Scholar 

  15. Mirzadegan, T., Benko, G., Filipek, S., and Palczewski, K. (2003) Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin, Biochemistry 42, 2759–2767.

    Article  PubMed  CAS  Google Scholar 

  16. Papermaster, D. S., and Dreyer, W. J. (1974) Rhodopsin content in the outer segment membranes of bovine and frog retinal rods, Biochemistry 13, 2438–2444.

    Article  PubMed  CAS  Google Scholar 

  17. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Crystal structure of rhodopsin: A G protein-coupled receptor, Science 289, 739–745.

    Article  PubMed  CAS  Google Scholar 

  18. Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G. F., Thian, F. S., Kobilka, T. S., Choi, H. J., Kuhn, P., Weis, W. I., Kobilka, B. K., and Stevens, R. C. (2007) High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor, Science 318, 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  19. Jaakola, V. P., Griffith, M. T., Hanson, M. A., Cherezov, V., Chien, E. Y. T., Lane, J. R., IJzerman, A. P., and Stevens, R. C. (2008) The 2.6 Angstrom Crystal Structure of a Human A(2A) Adenosine Receptor Bound to an Antagonist, Science 322, 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  20. Murakami, M., and Kouyama, T. (2008) Crystal structure of squid rhodopsin, Nature 453, 363–367.

    Article  PubMed  CAS  Google Scholar 

  21. Warne, T., Serrano-Vega, M. J., Baker, J. G., Moukhametzianov, R., Edwards, P. C., Henderson, R., Leslie, A. G. W., Tate, C. G., and Schertler, G. F. X. (2008) Structure of a beta(1)-adrenergic G-protein-coupled receptor, Nature 454, 486-U482.

    Article  PubMed  CAS  Google Scholar 

  22. Wu, B., Chien, E. Y., Mol, C. D., Fenalti, G., Liu, W., Katritch, V., Abagyan, R., Brooun, A., Wells, P., Bi, F. C., Hamel, D. J., Kuhn, P., Handel, T. M., Cherezov, V., and Stevens, R. C. (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists, Science 330, 1066–1071.

    Article  PubMed  CAS  Google Scholar 

  23. Unger, V. M., and Schertler, G. F. (1995) Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy, Biophys J 68, 1776–1786.

    Article  PubMed  CAS  Google Scholar 

  24. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L., and Khorana, H. G. (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin, Science 274, 768–770.

    Article  PubMed  CAS  Google Scholar 

  25. Altenbach, C., Kusnetzow, A. K., Ernst, O. P., Hofmann, K. P., and Hubbell, W. L. (2008) High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation, Proc Natl Acad Sci U S A 105, 7439–7444.

    Article  PubMed  CAS  Google Scholar 

  26. Fung, B. K., Hurley, J. B., and Stryer, L. (1981) Flow of information in the light-triggered cyclic nucleotide cascade of vision, Proc Natl Acad Sci U S A 78, 152–156.

    Article  PubMed  CAS  Google Scholar 

  27. Gilman, A. G. (1987) G-Proteins - Transducers of Receptor-Generated Signals, Annual Review of Biochemistry 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  28. Downes, G. B., and Gautam, N. (1999) The G protein subunit gene families, Genomics 62, 544–552.

    Article  PubMed  CAS  Google Scholar 

  29. Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L., and Hamm, H. E. (2006) Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins, Nature Structural & Molecular Biology 13, 772–777.

    Article  CAS  Google Scholar 

  30. Tesmer, J. J., Sunahara, R. K., Gilman, A. G., and Sprang, S. R. (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS, Science 278, 1907–1916.

    Article  PubMed  CAS  Google Scholar 

  31. Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G., and Sprang, S. R. (1994) Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis, Science 265, 1405–1412.

    Article  PubMed  CAS  Google Scholar 

  32. Mixon, M. B., Lee, E., Coleman, D. E., Berghuis, A. M., Gilman, A. G., and Sprang, S. R. (1995) Tertiary and quaternary structural changes in Gi alpha 1 induced by GTP hydrolysis, Science 270, 954–960.

    Article  PubMed  CAS  Google Scholar 

  33. Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G., and Sprang, S. R. (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2, Cell 83, 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  34. Coleman, D. E., and Sprang, S. R. (1998) Crystal structures of the G protein Gi alpha 1 complexed with GDP and Mg2+: a crystallographic titration experiment, Biochemistry 37, 14376–14385.

    Article  PubMed  CAS  Google Scholar 

  35. Denker, B. M., Schmidt, C. J., and Neer, E. J. (1992) Promotion of the GTP-liganded state of the Go alpha protein by deletion of the C terminus, J Biol Chem 267, 9998–10002.

    PubMed  CAS  Google Scholar 

  36. Denker, B. M., Boutin, P. M., and Neer, E. J. (1995) Interactions between the amino- and carboxyl-terminal regions of G alpha subunits: analysis of mutated G alpha o/G alpha i2 chimeras, Biochemistry 34, 5544–5553.

    Article  PubMed  CAS  Google Scholar 

  37. Grishina, G., and Berlot, C. H. (2000) A surface-exposed region of G(salpha) in which substitutions decrease receptor-mediated activation and increase receptor affinity, Mol Pharmacol 57, 1081–1092.

    PubMed  CAS  Google Scholar 

  38. Preininger, A. M., Parello, J., Meier, S. M., Liao, G., and Hamm, H. E. (2008) Receptor-mediated changes at the myristoylated amino terminus of Galpha(il) proteins, Biochemistry 47, 10281–10293.

    Article  PubMed  CAS  Google Scholar 

  39. Kisselev, O. G., Ermolaeva, M. V., and Gautam, N. (1994) A farnesylated domain in the G protein gamma subunit is a specific determinant of receptor coupling, J Biol Chem 269, 21399–21402.

    PubMed  CAS  Google Scholar 

  40. Martin, E. L., Rens-Domiano, S., Schatz, P. J., and Hamm, H. E. (1996) Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library, J Biol Chem 271, 361–366.

    Article  PubMed  CAS  Google Scholar 

  41. Rasenick, M. M., Watanabe, M., Lazarevic, M. B., Hatta, S., and Hamm, H. E. (1994) Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors, J Biol Chem 269, 21519–21525.

    PubMed  CAS  Google Scholar 

  42. Taylor, J. M., Jacob-Mosier, G. G., Lawton, R. G., Remmers, A. E., and Neubig, R. R. (1994) Binding of an alpha 2 adrenergic receptor third intracellular loop peptide to G beta and the amino terminus of G alpha, J Biol Chem 269, 27618–27624.

    PubMed  CAS  Google Scholar 

  43. Taylor, J. M., Jacob-Mosier, G. G., Lawton, R. G., VanDort, M., and Neubig, R. R. (1996) Receptor and membrane interaction sites on Gbeta. A receptor-derived peptide binds to the carboxyl terminus, J Biol Chem 271, 3336–3339.

    Article  PubMed  CAS  Google Scholar 

  44. Itoh, Y., Cai, K., and Khorana, H. G. (2001) Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent, Proc Natl Acad Sci U S A 98, 4883–4887.

    Article  PubMed  CAS  Google Scholar 

  45. Cai, K., Itoh, Y., and Khorana, H. G. (2001) Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent, Proc Natl Acad Sci U S A 98, 4877–4882.

    Article  PubMed  CAS  Google Scholar 

  46. Lichtarge, O., Bourne, H. R., and Cohen, F. E. (1996) Evolutionarily conserved Galphabetagamma binding surfaces support a model of the G protein-receptor complex, Proc Natl Acad Sci U S A 93, 7507–7511.

    Article  PubMed  CAS  Google Scholar 

  47. Onrust, R., Herzmark, P., Chi, P., Garcia, P. D., Lichtarge, O., Kingsley, C., and Bourne, H. R. (1997) Receptor and betagamma binding sites in the alpha subunit of the retinal G protein transducin, Science 275, 381–384.

    Article  PubMed  CAS  Google Scholar 

  48. Marin, E. P., Krishna, A. G., and Sakmar, T. P. (2002) Disruption of the alpha5 helix of transducin impairs rhodopsin-catalyzed nucleotide exchange, Biochemistry 41, 6988–6994.

    Article  PubMed  CAS  Google Scholar 

  49. Preininger, A. M., Funk, M. A., Oldham, W. M., Meier, S. M., Johnston, C. A., Adhikary, S., Kimple, A. J., Siderovski, D. P., Hamm, H. E., and Iverson, T. M. (2009) Helix Dipole Movement and Conformational Variability Contribute to Allosteric GDP Release in G alpha(i) Subunits, Biochemistry 48, 2630–2642.

    Article  PubMed  CAS  Google Scholar 

  50. Cherfils, J., and Chabre, M. (2003) Activation of G-protein G alpha subunits by receptors through G alpha-G beta and G alpha-G gamma interactions, Trends in Biochemical Sciences 28, 13–17.

    Article  PubMed  CAS  Google Scholar 

  51. Rondard, P., Liu, J., Huang, S., Malhaire, F., Vol, C., Pinault, A., Labesse, G., and Pin, J. P. (2006) Coupling of agonist binding to effector domain activation in metabotropic glutamate-like receptors, J Biol Chem 281, 24653–24661.

    Article  PubMed  CAS  Google Scholar 

  52. Rasmussen, S. G., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., Devree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I., and Kobilka, B. K. (2011) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor, Nature 469, 175–180.

    Article  PubMed  CAS  Google Scholar 

  53. Rasmussen, S. G., Devree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K., and Kobilka, B. K. (2011) Crystal structure of the beta(2) adrenergic receptor-Gs protein complex, Nature.

    Google Scholar 

  54. Okada, T., Sugihara, M., Bondar, A. N., Elstner, M., Entel, P., and Buss, V. (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure, J Mol Biol 342, 571–583.

    Article  PubMed  CAS  Google Scholar 

  55. Choe, H. W., Kim, Y. J., Park, J. H., Morizumi, T., Pai, E. F., Krauss, N., Hofmann, K. P., Scheerer, P., and Ernst, O. P. (2011) Crystal structure of metarhodopsin II, Nature 471, 651–655.

    Article  PubMed  CAS  Google Scholar 

  56. James, G. T. (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers, Anal Biochem 86, 574–579.

    Article  PubMed  CAS  Google Scholar 

  57. Kaya, A. I., Thaker, T. M., Preininger, A. M., Iverson, T. M., and Hamm, H. E. (2011) Coupling efficiency of rhodopsin and transducin in bicelles, Biochemistry 50, 3193–3203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Iverson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thaker, T.M., Kaya, A.I., Preininger, A.M., Hamm, H.E., Iverson, T.M. (2012). Allosteric Mechanisms of G Protein-Coupled Receptor Signaling: A Structural Perspective. In: Fenton, A. (eds) Allostery. Methods in Molecular Biology, vol 796. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-334-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-334-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-333-2

  • Online ISBN: 978-1-61779-334-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics