Skip to main content

Using Mutant Cycle Analysis to Elucidate Long-Range Functional Coupling in Allosteric Receptors

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 796))

Abstract

Functional coupling of residues that are far apart in space is the quintessential property of allosteric receptors. Data from functional studies of allosteric receptors, such as whole-cell dose–response relations, can be used to determine if mutation to a receptor significantly impacts agonist potency. However, the classification of perturbations as primarily impacting binding or allosteric function is more challenging, often requiring detailed kinetic studies. This protocol describes a simple strategy, derived from mutant cycle analysis, for elucidating long-range functional coupling in allosteric receptors (ELFCAR). Introduction of a gain-of-function reporter mutation, followed by a mutant cycle analysis of the readily measured macroscopic EC50 values can provide insight into the role of many physically distant targets. This new method should find broad application in determining the functional roles of residues in allosteric receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Changeux, J. P., and Edelstein, S. J. (2005) Allosteric mechanisms of signal transduction, Science 308, 1424–1428.

    Article  PubMed  CAS  Google Scholar 

  2. Fenton, A. W. (2008) Allostery: an illustrated definition for the ‘second secret of life’, Trends Biochem Sci 33, 420–425.

    Article  PubMed  CAS  Google Scholar 

  3. Colquhoun, D. (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors, Br J Pharmacol 125, 924–947.

    Article  PubMed  CAS  Google Scholar 

  4. Carter, P. J., Winter, G., Wilkinson, A. J., and Fersht, A. R. (1984) The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus), Cell 38, 835–840.

    Article  PubMed  CAS  Google Scholar 

  5. Kash, T. L., Jenkins, A., Kelley, J. C., Trudell, J. R., and Harrison, N. L. (2003) Coupling of agonist binding to channel gating in the GABA(A) receptor, Nature 421, 272–275.

    Article  PubMed  CAS  Google Scholar 

  6. Gleitsman, K. R., Kedrowski, S. M., Lester, H. A., and Dougherty, D. A. (2008) An intersubunit hydrogen bond in the nicotinic acetylcholine receptor that contributes to channel gating, J Biol Chem 283, 35638–35643.

    Article  PubMed  CAS  Google Scholar 

  7. Price, K. L., Millen, K. S., and Lummis, S. C. (2007) Transducing agonist binding to channel gating involves different interactions in 5-HT3 and GABAC receptors, J Biol Chem 282, 25623–25630.

    Article  PubMed  CAS  Google Scholar 

  8. Venkatachalan, S. P., and Czajkowski, C. (2008) A conserved salt bridge critical for GABA(A) receptor function and loop C dynamics, Proc Natl Acad Sci U S A 105, 13604–13609.

    Article  PubMed  CAS  Google Scholar 

  9. Alexiev, U., Mollaaghababa, R., Khorana, H. G., and Heyn, M. P. (2000) Evidence for long range allosteric interactions between the extracellular and cytoplasmic parts of bacteriorhodopsin from the mutant R82A and its second site revertant R82A/G231C, J Biol Chem 275, 13431–13440.

    Article  PubMed  CAS  Google Scholar 

  10. Gleitsman, K. R., Shanata, J. A., Frazier, S. J., Lester, H. A., and Dougherty, D. A. (2009) Long-range coupling in an allosteric receptor revealed by mutant cycle analysis, Biophys J 96, 3168–3178.

    Article  PubMed  CAS  Google Scholar 

  11. Kalbaugh, T. L., VanDongen, H. M., and VanDongen, A. M. (2004) Ligand-binding residues integrate affinity and efficacy in the NMDA receptor, Mol Pharmacol 66, 209–219.

    Article  PubMed  CAS  Google Scholar 

  12. Filatov, G. N., and White, M. M. (1995) The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating, Mol Pharmacol 48, 379–384.

    PubMed  CAS  Google Scholar 

  13. Kearney, P. C., Zhang, H., Zhong, W., Dougherty, D. A., and Lester, H. A. (1996) Determinants of nicotinic receptor gating in natural and unnatural side chain structures at the M2 9′ position, Neuron 17, 1221–1229.

    Article  PubMed  CAS  Google Scholar 

  14. Labarca, C., Nowak, M. W., Zhang, H., Tang, L., Deshpande, P., and Lester, H. A. (1995) Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors, Nature 376, 514–516.

    Article  PubMed  CAS  Google Scholar 

  15. Connolly, C. N., and Wafford, K. A. (2004) The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function, Biochemical Society Transactions 32, 529–534.

    Article  PubMed  CAS  Google Scholar 

  16. Dougherty, D. A. (2008) Cys-loop neuroreceptors: structure to the rescue?, Chem Rev 108, 1642–1653.

    Article  PubMed  CAS  Google Scholar 

  17. Sine, S. M., and Engel, A. G. (2006) Recent advances in Cys-loop receptor structure and function, Nature 440, 448–455.

    Article  PubMed  CAS  Google Scholar 

  18. Dascal, N., and Lotan, I. (1992) Expression of exogenous ion channels and neurotransmitter receptors in RNA-injected Xenopus oocytes, In Methods in Molecular Biology (Longstaff, A., and Revest, P., Eds.), pp 205–225, Humana Press, Totowa, NJ.

    Google Scholar 

  19. Wang, J., Lester, H. A., and Dougherty, D. A. (2007) Establishing an ion pair interaction in the homomeric rho1 gamma-aminobutyric acid type A receptor that contributes to the gating pathway, J Biol Chem 282, 26210–26216.

    Article  PubMed  CAS  Google Scholar 

  20. Nowak, M. W., Gallivan, J. P., Silverman, S. K., Labarca, C. G., Dougherty, D. A., and Lester, H. A. (1998) In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system, Methods in Enzymology 293, 504–529.

    Article  PubMed  CAS  Google Scholar 

  21. Dougherty, D. A. (2008) Physical organic chemistry on the brain, J Org Chem 73, 3667–3673.

    Article  PubMed  CAS  Google Scholar 

  22. Mortensen, M., and Smart, T. G. (2007) Single-channel recording of ligand-gated ion channels, Nat Protoc 2, 2826–2841.

    Article  PubMed  CAS  Google Scholar 

  23. Chakrapani, S., Bailey, T. D., and Auerbach, A. (2004) Gating dynamics of the acetylcholine receptor extracellular domain, J Gen Physiol 123, 341–356.

    Article  PubMed  CAS  Google Scholar 

  24. Grosman, C., Zhou, M., and Auerbach, A. (2000) Mapping the conformational wave of acetylcholine receptor channel gating, Nature 403, 773–776.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kristin Rule Gleitsman for essential discussions throughout the development of ELFCAR. This work was supported by the National Institutes of Health (NS 34407; NS 11756). J.A.P.S. and S.F. were partially supported by National Research Service Awards from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis A. Dougherty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shanata, J.A.P., Frazier, S.J., Lester, H.A., Dougherty, D.A. (2012). Using Mutant Cycle Analysis to Elucidate Long-Range Functional Coupling in Allosteric Receptors. In: Fenton, A. (eds) Allostery. Methods in Molecular Biology, vol 796. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-334-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-334-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-333-2

  • Online ISBN: 978-1-61779-334-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics