Skip to main content

Detecting “Silent” Allosteric Coupling

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 796))

Abstract

Using isothermal calorimetry (ITC), we have found one case where a well-characterized allosteric activator showed no sign of allostery in its ΔG° of binding to successive sites on multiple subunits and another case where successive binding showed no ΔG° binding allostery but did show large entropy-compensated flip-flopping enthalpy changes. This behavior, which we have termed “isoergonic cooperativity” and others have referred to as “silent coupling” is quite simply explained by basic linkage theory when reactions are considered beyond the ΔG° level. Thus, direct calorimetric determination of all thermodynamic parameters including ΔH°, ΔS°, ΔG°, ΔC p°, and d(ΔC p°/dt) provides a more informative depiction of a ligand binding event and its consequences than does the mere measurement of ΔG° alone. We further discuss the benefits and limitations of methods that have previously been used to study silent coupling. In particular, ITC is free of the numerous pitfalls inherent in the application of van’t Hoff and Årrhenius plots to allosteric phenomena. Aside from having a 30-fold advantage in precision, ITC is capable of measuring changes in enthalpy directly at five more levels of mathematical differentiation than are available to van’t Hoff type approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher, H. F. and Tally, J. (1997) Isoergonic cooperativity in glutamate dehydrogenase complexes: a new form of allostery. Biochemistry 36, 10807–10810.

    Article  PubMed  CAS  Google Scholar 

  2. Fisher, H. F. and Tally, J. (1998) Isoergonic cooperativity: a novel form of allostery. Methods Enzymol. 295, 331–349.

    Article  PubMed  CAS  Google Scholar 

  3. Weber, G. (1975) Energetics of ligand binding to proteins. Adv. Protein Chem. 29, 1–83.

    Article  PubMed  CAS  Google Scholar 

  4. Eftink, M. R. and Biltonen, R. L. (1980) Thermodynamics of Interacting Biological Systems. In Biological Calorimetry (Breezer, A. E., Ed.) pp 343–408, Academic, New York.

    Google Scholar 

  5. Fisher, H. F. (1988) A unifying model of the thermodynamics of formation of dehydrogenase- ligand complexes. in Advances in Enzymology and Related Areas of Molecular Biology (Meister, A., Ed.) 61 ed., pp 1–46, Wiley, NJ.

    Google Scholar 

  6. Wyman, J., Jr. (1948) Heme proteins. Adv. Protein Chem. 4, 407–531.

    Article  PubMed  CAS  Google Scholar 

  7. Subramanian, S., Stickel, D. C., Colen, A. H., and Fisher, H. F. (1978) Thermodynamics of heterotropic interactions. The glutamate dehydrogenase. NADPH. glutamate complex. J. Biol. Chem. 253, 8369–8374.

    PubMed  CAS  Google Scholar 

  8. Lumry, R. and Rajender, S. (1970) Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9, 1125–1227.

    Article  PubMed  CAS  Google Scholar 

  9. Edsall, J. T. and Gutfreund, H. (1983) Bio-Thermodynamics, p 219, Wiley, New York.

    Google Scholar 

  10. Rialdi, G. and Biltonen, R. L. (1975) Thermodynamics and Thermochemistry. In MTP International Review of Science. Physical Chemistry (Skinner, H. A., Ed.) Series 2 ed., pp 147, Butterworths, London.

    Google Scholar 

  11. Hinz, H. J. and Jaenicke, R. (1975) Thermodynamics of complex formation between nicotinamide adenine dinucleotide and pig skeletal muscle lactate dehydrogenase. Biochemistry 14, 24–27.

    Article  PubMed  CAS  Google Scholar 

  12. Fisher, H. F., Colen, A. H., and Medary, R. T. (1981) Temperature-dependent delta CP generated by a shift in equilibrium between macrostates of an enzyme. Nature 292, 271–272.

    Article  PubMed  CAS  Google Scholar 

  13. Leffler, J. E. and Greenwald, E. (1963) Rates of Equilbria of Organic Reactions, Wiley, London.

    Google Scholar 

  14. Exner, O. (1964) On the enthalpy-entropy relationship. Collect. Czech. Chem. Commun. 29, 1094–1113.

    CAS  Google Scholar 

  15. Krug, R. R., Hunter, W. G., and Grieger, R. A. (1976) Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Årrhenius data. J. Phys. Chem. 80, 2335–2341.

    Article  CAS  Google Scholar 

  16. Keleti, T. (1983) Errors in the evaluation of Arrhenius and van’t Hoff plots. Biochem. J. 209, 277–280.

    PubMed  CAS  Google Scholar 

  17. Sharp, K. (2001) Entropy-enthalpy compensation: fact or artifact? Protein Sci. 10, 661–667.

    Article  PubMed  CAS  Google Scholar 

  18. Cornish-Bowden, A. (2002) Enthalpy-entropy compensation: a phantom phenomenon. J. Biosci. 27, 121–126.

    Article  PubMed  Google Scholar 

  19. Klotz, I. M. (1997) Ligand-Recptor Energetics – A Guide for the Perplexed, Wiley, New York.

    Google Scholar 

  20. Van Holde, K. E. (1985) Physical Biochemistry, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  21. Horn, J. R., Russell, D., Lewis, E. A., and Murphy, K. P. (2001) Van’t Hoff and calorimetric enthalpies from isothermal titration calorimetry: are there significant discrepancies? Biochemistry 40, 1774–1778.

    Article  PubMed  CAS  Google Scholar 

  22. Jonsson, T., Glickman, M. H., Sun, S., and Klinman, J. P. (1996) Experimental evidence for extensive tunneling of hydrogen in the lipoxygenase reaction: implications for enzyme catalysis. J. Am. Chem. Soc., 118, 10319–10320.

    Article  CAS  Google Scholar 

  23. Limbach, H., Lopez, J. M., and Kohen, A. (2006) Årrhenius curves of hydrogen transfers: tunnel effects, isotope effects and effects of pre-equilibria. Phil. Trans. R. Soc. B 361, 1399–1415.

    Article  PubMed  CAS  Google Scholar 

  24. Cook, P. and Cleland, W. W. (2007) Enzyme Kinetics and Mechanism, Garland Science Publishing, New York.

    Google Scholar 

  25. Gutfreund, H. (1998) Kinetics for the Life Sciences, U.K. Press Cambridge, Cambridge.

    Google Scholar 

  26. Fisher, H. F. and Singh, N. (1995) Calorimetric methods for interpreting protein-ligand interactions. Methods Enzymol. 259, 194–221.

    Article  PubMed  CAS  Google Scholar 

  27. (1986) The Flucuating Enzyme, Wiley, London.

    Google Scholar 

  28. Wiseman, T., Williston, S., Brandts, J. F., and Lin, L. N. (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137.

    Article  PubMed  CAS  Google Scholar 

  29. Indyk, L. and Fisher, H. F. (1998) Theoretical aspects of isothermal titration calorimetry. Methods Enzymol. 295, 350–364.

    Article  PubMed  CAS  Google Scholar 

  30. Leavitt, S. and Freire, E. (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol. 11, 560–566.

    Article  PubMed  CAS  Google Scholar 

  31. Ackers, G. K., Doyle, M. L., Myers, D., and Daugherty, M. A. (1992) Molecular code for cooperativity in hemoglobin. Science 255, 54–63.

    Article  PubMed  CAS  Google Scholar 

  32. Kodama, T. (1985) Thermodynamic analysis of muscle ATPase mechanisms. Physiol. Rev. 65, 467–551.

    PubMed  CAS  Google Scholar 

  33. Braxton, B. L., Tlapak-Simmons, V. L., and Reinhart, G. D. (1994) Temperature-induced inversion of allosteric phenomena. J. Biol. Chem. 269, 47–50.

    PubMed  CAS  Google Scholar 

  34. Tlapak-Simmons, V. L. and Reinhart, G. D. (1998) Obfuscation of allosteric structure-function relationships by enthalpy-entropy compensation. Biophys. J. 75, 1010–1015.

    Article  PubMed  CAS  Google Scholar 

  35. Haldane, J. B. S. (1930) Enzymes, Green and Co., Longmans.

    Google Scholar 

  36. Monod, J., Wyman, J., Changeux, J. P. (1965) On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118.

    Article  PubMed  CAS  Google Scholar 

  37. Fenton, A. W. (2008) Allostery: An illustrated definition for the ‘second secret of life’. Trends Biochem. Sci. 33,420–425.

    Article  PubMed  CAS  Google Scholar 

  38. Cleland, W. W. (1963) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67, 104–137.

    Article  PubMed  CAS  Google Scholar 

  39. Feynman, R. P., Kislinger, M., and Ravndal, F. (1971) Phenomenological model for diffractive excitation of Hadron resonances. Phys. Rev. D 3, 2706.

    Article  Google Scholar 

  40. Kim, Y. S. (2007) Coupled oscillators and Feynman’s three papers. J. Phys. Conf. Ser. 70, 1–19.

    Article  Google Scholar 

  41. Pauling, L. (1946) Molecular architecture and biological reactions. Chem. Eng. News 24, 1375.

    Article  CAS  Google Scholar 

  42. Lumry, R. (1986) Free-Energy Management in Protein Reactions: Concepts, Complications and Compensation. In The Fluctuating Enzyme (Welch, G. R., Ed.) pp 32, Wiley, London.

    Google Scholar 

  43. Fisher, H. F. and Singh, N. (1991) Transduction of enzyme-ligand binding energy into catalytic driving force. FEBS Lett. 294, 1–5.

    Article  PubMed  CAS  Google Scholar 

  44. Oster, G. F., Perelson, A. S., and Katchalsky, A. (1971). Network thermodynamics. Nature 234, 393–397.

    Article  Google Scholar 

  45. Oster, G. F. and Perelson, A. S. (1973). Systems, circuits and thermodynamics. Israel J. Chem. 11, 445–478.

    CAS  Google Scholar 

  46. Swint-Kruse, L. and Fisher, H. F. (2008) Enzymatic reaction sequences as coupled multiple traces on a multidimensional landscape. Trends Biochem. Sci. 33, 104–112.

    Article  PubMed  CAS  Google Scholar 

  47. Rose, I. A. (1998) How fumarase recycles after the malate --> fumarate reaction. Insights into the reaction mechanism. Biochemistry 37, 17651–17658.

    Article  PubMed  CAS  Google Scholar 

  48. Benkovic, S. J., Hammes, G. G., and Hammes-Schiffer, S. (2008) Free-energy landscape of enzyme catalysis. Biochemistry 47, 3317–3321.

    Article  PubMed  CAS  Google Scholar 

  49. Fisher, H. F., Subramanian, S., Stickel, D. C., and Colen, A. H. (1980) The thermodynamics of a negatively interacting allosteric effector system. The glutamate dehydrogenase. NADPH. ADP complexes. J. Biol. Chem. 255, 2509–2513.

    PubMed  CAS  Google Scholar 

  50. Reinhart, G. D. (1983) The determination of thermodynamic allosteric parameters of an enzyme undergoing stead-state turnover. Arch. Biochem. Biophys. 224, 389–401.

    Article  PubMed  CAS  Google Scholar 

  51. Reinhart, G. D. (2004) Quantitative analysis and interpretation of allosteric behavior. Methods Enzymol. 380, 187–203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey F. Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fisher, H.F. (2012). Detecting “Silent” Allosteric Coupling. In: Fenton, A. (eds) Allostery. Methods in Molecular Biology, vol 796. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-334-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-334-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-333-2

  • Online ISBN: 978-1-61779-334-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics