Skip to main content
Book cover

Allostery pp 279–304Cite as

Ensemble Properties of Network Rigidity Reveal Allosteric Mechanisms

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 796))

Abstract

The distance constraint model (DCM) is a unique computational modeling paradigm that integrates mechanical and thermodynamic descriptions of macromolecular structure. That is, network rigidity calculations are used to account for nonadditivity within entropy components, thus restoring the utility of free-energy decomposition. The DCM outputs a large number of structural characterizations that collectively allow for quantified stability–flexibility relationships (QSFR) to be identified. In this review, we describe the theoretical underpinnings of the DCM and introduce several common QSFR metrics. Application of the DCM across protein families highlights the sensitivity within the set of protein structure residue-to-residue couplings. Further, we have developed a perturbation method to identify putative allosteric sites, where large changes in QSFR upon rigidification (mimicking ligand-binding) detect sites likely to invoke allosteric changes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mittermaier, A., and Kay, L. E. (2006). New tools provide new insights in NMR studies of protein dynamics. Science 312, 224–228.

    Article  PubMed  CAS  Google Scholar 

  2. Fersht, A. R. (1974). Catalysis, binding and enzyme-substrate complementarity. Proc R Soc Lond B 187, 397–407.

    Article  PubMed  CAS  Google Scholar 

  3. Robertson, A. D., and Murphy, K. P. (1997). Protein Structure and the Energetics of Protein Stability. Chem Rev 97, 1251–1268.

    Article  PubMed  CAS  Google Scholar 

  4. Jacobs, D. J., Dallakyan, S., Wood, G. G., and Heckathorne, A. (2003). Network rigidity at finite temperature: relationships between thermodynamic stability, the nonadditivity of entropy, and cooperativity in molecular systems. Phys Rev E Stat Nonlin Soft Matter Phys 68, 061109.

    Article  PubMed  Google Scholar 

  5. Jacobs, D. J. 2006. Predicting protein flexibility and stability using network rigidity: a new modeling paradigm. In Recent Research Developments in Biophysics. Transworld Research Network, Trivandrum, India. 71–131.

    Google Scholar 

  6. Jacobs, D. J., and Dallakyan, S. (2005). Elucidating protein thermodynamics from the three-dimensional structure of the native state using network rigidity. Biophys J 88, 903–915.

    Article  PubMed  CAS  Google Scholar 

  7. Livesay, D. R., Dallakyan, S., Wood, G. G., and Jacobs, D. J. (2004). A flexible approach for understanding protein stability. FEBS Lett 576, 468–476.

    Article  PubMed  CAS  Google Scholar 

  8. Livesay, D. R., and Jacobs, D. J. (2006). Conserved quantitative stability/flexibility relationships (QSFR) in an orthologous RNase H pair. Proteins 62, 130–143.

    Article  PubMed  CAS  Google Scholar 

  9. Jacobs, D. J., Livesay, D. R., Hules, J., and Tasayco, M. L. (2006). Elucidating quantitative stability/flexibility relationships within thioredoxin and its fragments using a distance constraint model. J Mol Biol 358, 882–904.

    Article  PubMed  CAS  Google Scholar 

  10. Livesay, D. R., Huynh, D. H., Dallakyan, S., and Jacobs, D. J. (2008). Hydrogen bond networks determine emergent mechanical and thermodynamic properties across a protein family. Chem Cent J 2, 17.

    Article  PubMed  Google Scholar 

  11. Mottonen, J. M., Xu, M., Jacobs, D. J., and Livesay, D. R. (2009). Unifying mechanical and thermodynamic descriptions across the thioredoxin protein family. Proteins 75, 610–627.

    Article  PubMed  CAS  Google Scholar 

  12. Mottonen, J. M., Jacobs, D. J., and Livesay, D. R. (2010). Allosteric Response is Both Conserved and Variable Across Three CheY Orthologs. Biophys J 99, 2245–2254.

    Article  PubMed  CAS  Google Scholar 

  13. Salsbury, F. R., Jr. (2010). Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr Opin Pharmacol 10, 738–744.

    Article  PubMed  CAS  Google Scholar 

  14. Tozzini, V. (2010). Multiscale modeling of proteins. Acc Chem Res 43, 220–230.

    Article  PubMed  CAS  Google Scholar 

  15. Zwier, M. C., and Chong, L. T. (2010). Reaching biological timescales with all-atom molecular dynamics simulations. Curr Opin Pharmacol 10, 745–752.

    Article  PubMed  CAS  Google Scholar 

  16. Meirovitch, H. (2007). Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Curr Opin Struct Biol 17, 181–186.

    Article  PubMed  CAS  Google Scholar 

  17. Rodinger, T., and Pomes, R. (2005). Enhancing the accuracy, the efficiency and the scope of free energy simulations. Curr Opin Struct Biol 15, 164–170.

    Article  PubMed  CAS  Google Scholar 

  18. Kumar, S., Ma, B., Tsai, C. J., Sinha, N., and Nussinov, R. (2000). Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 9, 10–19.

    Article  PubMed  CAS  Google Scholar 

  19. Chennubhotla, C., Rader, A. J., Yang, L. W., and Bahar, I. (2005). Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies. Phys Biol 2, S173–180.

    Article  PubMed  CAS  Google Scholar 

  20. Wells, S., Menor, S., Hespenheide, B., and Thorpe, M. F. (2005). Constrained geometric simulation of diffusive motion in proteins. Phys Biol 2, S127–136.

    Article  PubMed  CAS  Google Scholar 

  21. Farrell, D. W., Speranskiy, K., and Thorpe, M. F. (2010). Generating stereochemically acceptable protein pathways. Proteins 78, 2908–2921.

    Article  PubMed  CAS  Google Scholar 

  22. Herzberg, G. 1945. Infrared and Raman spectra of polyatomic molecules. D. Van Nostrand Company, New York.

    Google Scholar 

  23. Maxwell, J. C. (1864). On the calculation of the equilibrium and stiffness of frames. Phil Mag 27, 294–299.

    Google Scholar 

  24. Thorpe, M. F., and Duxbury, P. M. 1999. Rigidity Theory and Applications. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  25. Jacobs, D. J., and Hendrickson, B. (1997). An algorithm for two-dimensional rigidity percolation: The pebble game. J. Comp. Phys. 137, 346–365.

    Article  Google Scholar 

  26. Jacobs, D. J., Rader, A. J., Kuhn, L. A., and Thorpe, M. F. (2001). Protein flexibility predictions using graph theory. Proteins 44, 150–165.

    Article  PubMed  CAS  Google Scholar 

  27. Rader, A. J., Hespenheide, B. M., Kuhn, L. A., and Thorpe, M. F. (2002). Protein unfolding: rigidity lost. Proc Natl Acad Sci USA 99, 3540–3545.

    Article  PubMed  CAS  Google Scholar 

  28. Munoz, V. (2001). What can we learn about protein folding from Ising-like models? Curr Opin Struct Biol 11, 212–216.

    Article  PubMed  CAS  Google Scholar 

  29. Zimm, B. H., and Bragg, J. K. (1959). Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31, 526–535.

    Article  CAS  Google Scholar 

  30. Lifson, S., and Roig, A. (1961). On the theory of helix-coil transitions in polypeptides. J. Chem. Phys. 34, 1963–1974.

    Article  CAS  Google Scholar 

  31. Hilser, V. J., and Freire, E. (1996). Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J Mol Biol 262, 756–772.

    Article  PubMed  CAS  Google Scholar 

  32. Hilser, V. J., Garcia-Moreno, E. B., Oas, T. G., Kapp, G., and Whitten, S. T. (2006). A statistical thermodynamic model of the protein ensemble. Chem Rev 106, 1545–1558.

    Article  PubMed  CAS  Google Scholar 

  33. Zamparo, M., and Pelizzola, A. (2006). Kinetics of the Wako-Saito-Munoz-Eaton model of protein folding. Phys Rev Lett 97, 068106.

    Article  PubMed  Google Scholar 

  34. Jacobs, D. J. (2010). Ensemble-based methods for describing protein dynamics. Curr Opin Pharmacol 10, 760–769.

    Article  PubMed  CAS  Google Scholar 

  35. Vorov, O. K., Livesay, D. R., and Jacobs, D. J. (2009). Helix/coil nucleation: a local response to global demands. Biophys J 97, 3000–3009.

    Article  PubMed  CAS  Google Scholar 

  36. Wood, G. G., Clinkenbeard, D. A., and Jacobs, D. J. (2011). Nonadditivity in the alpha-helix to coil transition. Biopolymers 95, 240–253.

    Google Scholar 

  37. Dill, K. A. (1997). Additivity principles in biochemistry. J Biol Chem 272, 701–704.

    PubMed  CAS  Google Scholar 

  38. Gao, J., Kuczera, K., Tidor, B., and Karplus, M. (1989). Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science 244, 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  39. Mark, A. E., and van Gunsteren, W. F. (1994). Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. J Mol Biol 240, 167–176.

    Article  PubMed  CAS  Google Scholar 

  40. Hallerbach, B., and Hinz, H. J. (1999). Protein heat capacity: inconsistencies in the current view of cold denaturation. Biophys Chem 76, 219–227.

    Article  PubMed  CAS  Google Scholar 

  41. Huang, K. 1987. Statistical mechanics. Wiley, New York.

    Google Scholar 

  42. Jacobs D. J., and Wood G. G. (2004). Understanding the α-Helix to Coil Transition in Polypeptides Using Network Rigidity: Predicting Heat and Cold Denaturation in Mixed Solvent Conditions. Biopolymers 75, 1–31.

    Google Scholar 

  43. Dahiyat, B. I., Gordon, D. B., and Mayo, S. L. (1997). Automated design of the surface positions of protein helices. Protein Sci 6, 1333–1337.

    Article  PubMed  CAS  Google Scholar 

  44. Hollien, J., and Marqusee, S. (1999). A thermodynamic comparison of mesophilic and thermophilic ribonucleases H. Biochemistry 38, 3831–3836.

    Article  PubMed  CAS  Google Scholar 

  45. Verma, D., Jacobs, D. J., and Livesay, D. R. (2010). Predicting the melting point of human c-type lysozyme mutants. Curr Protein Pept Sci 11, 562–572.

    Article  PubMed  CAS  Google Scholar 

  46. del Sol, A., Tsai, C. J., Ma, B., and Nussinov, R. (2009). The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 17, 1042–1050.

    Article  PubMed  Google Scholar 

  47. Zhu, X., Amsler, C. D., Volz, K., and Matsumura, P. (1996). Tyrosine 106 of CheY plays an important role in chemotaxis signal transduction in Escherichia coli. J Bacteriol 178, 4208–4215.

    PubMed  CAS  Google Scholar 

  48. Cho, H. S., Lee, S. Y., Yan, D., Pan, X., Parkinson, J. S., Kustu, S., Wemmer, D. E., and Pelton, J. G. (2000). NMR structure of activated CheY. J Mol Biol 297, 543–551.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The work described here has been primarily supported by the NIH since 2003. We acknowledge continuing support from NIH NIGMS grant R01 GM073082, which is allowing us to extend these ideas more fully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jacobs, D.J., Livesay, D.R., Mottonen, J.M., Vorov, O.K., Istomin, A.Y., Verma, D. (2012). Ensemble Properties of Network Rigidity Reveal Allosteric Mechanisms. In: Fenton, A. (eds) Allostery. Methods in Molecular Biology, vol 796. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-334-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-334-9_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-333-2

  • Online ISBN: 978-1-61779-334-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics