Skip to main content

Binding Techniques to Study the Allosteric Energy Cycle

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 796))

Abstract

Thermodynamic principles of cooperativity and allostery have long been used as a starting point to begin understanding the interplay between ligand binding events. Understanding the nature of allosteric effects requires an experimental technique that can be used to quantify ligand binding energies and simultaneously give experimental insights into the conformational dynamics at play upon ligand binding. CD spectroscopy provides macroscopic information about the relative secondary and tertiary structures present in a protein. Here, we use this spectroscopic technique with thermal shift assays wherein ligand binding constants can be quantified based on their stabilizing effect against thermally induced protein denaturation. Binding constants for two ligands are used to determine a pairwise coupling free energy which defines the shared energy that favors or opposes binding of the second ligand binding event in an allosteric system. In CD-based thermal shift assays, temperature is the driving force for protein unfolding and can also influence protein conformational dynamics present in the unbound protein or ligand-bound proteins. Dihydrofolate reductase (DHFR) and glutamate dehydrogenase (GDH) are proposed as example test systems. NADP and methotrexate bind DHFR with positive cooperativity. Mammalian GDH exhibits negative cooperativity with respect to binding of NAD and NADPH coenzyme molecules, activation by ADP, and inhibition by GTP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber, G. (1972) Ligand binding and internal equilibria in proteins. Biochemistry 11, 864–878

    Article  PubMed  CAS  Google Scholar 

  2. Kranz, J. K., and Hall, K. B. (1999) RNA recognition by the human U1A protein is mediated by a network of local cooperative interactions that create the optimal binding surface. J Mol Biol 285, 215–231

    Article  PubMed  CAS  Google Scholar 

  3. Showalter, S. A., and Hall, K. B. (2004) Altering the RNA-binding mode of the U1A RBD1 protein. J Mol Biol 335, 465–480

    Article  PubMed  CAS  Google Scholar 

  4. Showalter, S. A., and Hall, K. B. (2002) 5. A functional role for correlated motion in the N-terminal RNA-binding domain of human U1A protein. J Mol Biol 322, 533–54

    Article  PubMed  CAS  Google Scholar 

  5. Shoemaker, B. A., Portman, J. J., and Wolynes, P. G. (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci U S A 97, 8868–887

    Article  PubMed  CAS  Google Scholar 

  6. Lee, A. L., and Wand, A. J. (2001) Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504

    Article  PubMed  CAS  Google Scholar 

  7. Brokx, R. D., Lopez, M. M., Vogel, H. J., and Makhatadze, G. I. (2001) Energetics of target peptide binding by calmodulin reveals different modes of binding. J Biol Chem 276, 14083–14091

    PubMed  CAS  Google Scholar 

  8. Frederick, K. K., Marlow, M. S., Valentine, K. G., and Wand, A. J. (2007) Conformational entropy in molecular recognition by proteins. Nature 448, 325–329

    Article  PubMed  CAS  Google Scholar 

  9. Henzler-Wildman, K., and Kern, D. (2007) Dynamic personalities of proteins. Nature 450, 964–972

    Article  PubMed  CAS  Google Scholar 

  10. Nashine, V. C., Hammes-Schiffer, S., and Benkovic, S. J. (2010) Coupled motions in enzyme catalysis. Curr Opin Chem Biol 14, 644–651

    Article  PubMed  CAS  Google Scholar 

  11. Tsai, C. J., del Sol, A., and Nussinov, R. (2008) Allostery: absence of a change in shape does not imply that allostery is not at play. J Mol Biol 378, 1–11

    Article  PubMed  CAS  Google Scholar 

  12. Wand, A. J. (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol 8, 926–931

    Article  PubMed  CAS  Google Scholar 

  13. Larion, M., Salinas, R. K., Bruschweiler-Li, L., Bruschweiler, R., and Miller, B. G. (2010) Direct evidence of conformational heterogeneity in human pancreatic glucokinase from high-resolution nuclear magnetic resonance. Biochemistry 49, 7969–7971

    Article  PubMed  CAS  Google Scholar 

  14. Hilser, V. J., Garcia-Moreno, E. B., Oas, T. G., Kapp, G., and Whitten, S. T. (2006) A statistical thermodynamic model of the protein ensemble. Chem Rev 106, 1545–1558

    Article  PubMed  CAS  Google Scholar 

  15. Vertrees, J., Wrabl, J. O., and Hilser, V. J. (2009) Energetic profiling of protein folds. Methods Enzymol 455, 299–327

    Article  PubMed  CAS  Google Scholar 

  16. Di Cera, E. (1998) Site-specific analysis of mutational effects in proteins. Adv Protein Chem 51, 59–119

    Article  PubMed  Google Scholar 

  17. Jencks, W. P. (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci U S A 78, 4046–4050

    Article  PubMed  CAS  Google Scholar 

  18. Weber, G. (1975) Energetics of ligand binding to proteins. Adv Protein Chem 29, 1–83

    Article  PubMed  CAS  Google Scholar 

  19. Greenfield, N., and Fasman, G. D. (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116

    Article  PubMed  CAS  Google Scholar 

  20. Greenfield, N. J. (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem 235, 1–10

    Article  PubMed  CAS  Google Scholar 

  21. Greenfield, N. J. (2006) Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat. Protocols 1, 2733–2741

    Article  CAS  Google Scholar 

  22. Greenfield, N. J. (2006) Analysis of the kinetics of folding of proteins and peptides using circular dichroism. Nat. Protocols 1, 2891–2899

    Article  CAS  Google Scholar 

  23. Greenfield, N. J. (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protocols 1, 2527–2535

    Article  CAS  Google Scholar 

  24. Adler, A. J., Greenfield, N. J., and Fasman, G. D. (1973) Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 27, 675–735

    Article  PubMed  CAS  Google Scholar 

  25. Greenfield, N. J. (2004) Circular dichroism analysis for protein-protein interactions. Methods Mol. Biol. 261, 55–78

    PubMed  CAS  Google Scholar 

  26. Greenfield, N. J. (2004) Analysis of circular dichroism data. Methods Enzymol. 383, 282–317

    Article  PubMed  CAS  Google Scholar 

  27. Greenfield, N. J. (2006) Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat. Protocols 1, 2733–2741

    Article  CAS  Google Scholar 

  28. Hennessey, J. P., Jr., and Johnson, W. C., Jr. (1981) Information content in the circular dichroism of proteins. Biochemistry 20, 1085–1094

    Article  PubMed  CAS  Google Scholar 

  29. Bystroff, C., and Kraut, J. (1991) Crystal structure of unliganded Escherichia coli dihydrofolate reductase. Ligand-induced conformational changes and cooperativity in binding. Biochemistry 30, 2227–2239

    Article  PubMed  CAS  Google Scholar 

  30. Frieden, C. (1965) Glutamate dehydrogenase. VI. survey of Purine Nucleotide and other effects on the enzyme from various sources. J Biol Chem 240, 2028–2035

    PubMed  CAS  Google Scholar 

  31. George, A., and Bell, J. E. (1980) Effects of adenosine 5′-diphosphate on bovine glutamate dehydrogenase: diethyl pyrocarbonate modification. Biochemistry 19, 6057–6061

    Article  PubMed  CAS  Google Scholar 

  32. Banerjee, S., Schmidt, T., Fang, J., Stanley, C. A., and Smith, T. J. (2003) Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation. Biochemistry 42, 3446–3456

    Article  PubMed  CAS  Google Scholar 

  33. Brandts, J. F., and Lin, L. N. (1990) Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry 29, 6927–6940

    Article  PubMed  CAS  Google Scholar 

  34. Shrake, A., and Ross, P. D. (1990) Ligand-induced biphasic protein denaturation. J Biol Chem 265, 5055–5059

    PubMed  CAS  Google Scholar 

  35. Kranz, J. K., and Schalk-Hihi, C. (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493, 277–98

    Article  PubMed  CAS  Google Scholar 

  36. Matulis, D., Kranz, J. K., Salemme, F. R., and Todd, M. J. (2005) Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry 44, 5258–5266

    Article  PubMed  CAS  Google Scholar 

  37. Zhang, R., and Monsma, F. (2010) Fluorescence-based thermal shift assays. Curr Opin Drug Discov Devel 13, 389–402

    PubMed  CAS  Google Scholar 

  38. Privalov, P. L. (1979) Stability of proteins: small globular proteins. Adv Protein Chem 33, 167–241

    Article  PubMed  CAS  Google Scholar 

  39. Murphy, K. P., and Gill, S. J. (1991) Solid model compounds and the thermodynamics of protein unfolding. J Mol Biol 222, 699–709

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Kranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kranz, J.K., Clemente, J.C. (2012). Binding Techniques to Study the Allosteric Energy Cycle. In: Fenton, A. (eds) Allostery. Methods in Molecular Biology, vol 796. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-334-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-334-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-333-2

  • Online ISBN: 978-1-61779-334-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics