Engineering Cyclic Amidases for Non-natural Amino Acid Synthesis

  • Francisco Javier Las Heras-VázquezEmail author
  • Josefa María Clemente-Jiménez
  • Sergio Martínez-Rodríguez
  • Felipe Rodríguez-Vico
Part of the Methods in Molecular Biology book series (MIMB, volume 794)


Hydantoinases/dihydropyrimidinases are important biotechnological enzymes involved in the production of α- and β-amino acids. Their isolation from new sources with different substrate specificities, improved activity, enantioselectivity, or higher stability continues to be of great industrial interest. Here, we provide a detailed description of how to produce high quantities of the recombinant hydantoinase/dihydropyrimidinase enzyme from Sinorhizobium meliloti CECT4114 (SmeDhp). Several techniques are combined to obtain this goal, from cloning to activity measurement by HPLC.

Key words

α- and β-Amino acids Hydantoinases/dihydropyrimidinases Cloning Overexpression Metal-affinity HPLC 



This work was supported by the Spanish Ministry of Education and Science and European Regional Development Fund (ERDF) through the project BIO2007-67009, the Andalusian Regional Council of Innovation, Science and Technology through the projects CV7-02651 and TEP4691 and the European Science Foundation COST Action CM0701.


  1. 1.
    Kim G J, Kim H S (1998) Identification of the structural similarity in the functionally related amidohydrolases acting on the cyclic amide ring. Biochem J 330, 295–302.PubMedGoogle Scholar
  2. 2.
    May O, Habenicht A, Mattes R et al. (1998) Molecular evolution of hydantoinases. Biol Chem 379, 743–747.PubMedGoogle Scholar
  3. 3.
    Nam S H, Park H S, Kim H S (2005) Evolutionary relationship and application of a superfamily of cyclic amidohydrolase enzymes. The Chemical Record 5, 298–307.CrossRefGoogle Scholar
  4. 4.
    Lohkamp B, Andersen B, Piskur J, Dobritzsch D (2006) The crystal structures of dihydropyrimidinases reaffirm the close relationship between cyclic amidohydrolases and explain their substrate specificity. J Biol Chem 281, 13762–13776.PubMedCrossRefGoogle Scholar
  5. 5.
    Syldatk C, May O, Altenbuchner J et al. (1999) Microbial hydantoinases-industrial enzymes from the origin of life? Appl Microbiol Biotechnol 51, 293–309.PubMedCrossRefGoogle Scholar
  6. 6.
    Martínez-Rodríguez S, Las Heras-Vázquez F J, Clemente-Jiménez J M et al. (2002) Complete conversion of D,L-5-monosubstituted hydantoins with a low velocity of chemical racemisation into D-amino acids using whole cells of recombinant Escherichia coli. Biotechnol Prog 18, 1201–1206.PubMedCrossRefGoogle Scholar
  7. 7.
    Martínez-Gómez A I, Martínez-Rodríguez S, Clemente-Jiménez J M et al. (2007) Recombi-nant polycistronic structure of hydantoinase process genes in Escherichia coli for the production of optically pure D-amino acids. Appl Environ Microbiol 73, 1525–1531.PubMedCrossRefGoogle Scholar
  8. 8.
    Las Heras-Vázquez F J, Martínez-Rodríguez S, Mingorance-Cazorla L et al. (2003) Overexpression and characterization of hydantoin racemase from Agrobacterium tumefaciens C58. Biochem Biophys Res Commun 303, 541–547.PubMedCrossRefGoogle Scholar
  9. 9.
    Martínez-Rodríguez S, Clemente-Jiménez J M, Rodríguez-Vico F, Las Heras-Vázquez F J (2005) Molecular cloning and biochemical characterization of L-N-carbamoylase from Sinorhizobium meliloti CECT4114. J Mol Microbiol Biotechnol 9, 16–25.PubMedCrossRefGoogle Scholar
  10. 10.
    Capela D, Barloy-Hubler F, Gouzy J et al. (2001) From the Cover: Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98, 9877–9882.PubMedCrossRefGoogle Scholar
  11. 11.
    Galibert F, Finan T M, Long S R et al. (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293, 668–672.PubMedCrossRefGoogle Scholar
  12. 12.
    Menlove K J, Clement M, Crandall K A (2009) Similarity searching using BLAST. In: Posada, D. Ed. Bioinformatics for DNA Sequence Analysis. Methods in Molecular Biology series Vol. 537. Humana Press, a part of Springer Science, New York.Google Scholar
  13. 13.
    Martínez-Rodríguez S, Martínez-Gómez A I, Clemente-Jiménez J M et al. (2010) Structure of dihydropyrimidinase from Sinorhizobium meliloti CECT4114: new features in an amidohydrolase family member. J Struct Biol 169, 200–208.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Francisco Javier Las Heras-Vázquez
    • 1
    Email author
  • Josefa María Clemente-Jiménez
    • 1
  • Sergio Martínez-Rodríguez
    • 1
  • Felipe Rodríguez-Vico
    • 1
  1. 1.Departamento de Química-Física, Bioquímica y Química InorgánicaUniversidad de AlmeríaAlmeríaSpain

Personalised recommendations