Advertisement

Carbon–Carbon Bond-Forming Enzymes for the Synthesis of Non-natural Amino Acids

  • Pere ClapésEmail author
  • Jesús Joglar
  • Mariana Gutiérrez
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 794)

Abstract

An enzymatic methodology for the preparation of β-hydroxy-α-amino acid derivatives is described. The method consists of the stereoselective aldol addition reaction of glycine to N-Cbz-amino aldehydes furnishing 3-hydroxy-2,4-diaminobutyric derivatives.

Key words

Lyases Biotransformation Aldol reaction Low specific l-allo-threonine aldolases Serine hydroxymethyl transferase 

References

  1. 1.
    Kimura T, Vassilev VP, Shen GJ, et al. (1997) Enzymatic synthesis of β-hydroxy-α-amino acids based on recombinant D- and L-threonine aldolases. J Am Chem Soc 119, 11734–11742.CrossRefGoogle Scholar
  2. 2.
    Liu JQ, Odani M, Yasuoka T, et al. (2000) Gene cloning and overproduction of low-specificity D-threonine aldolase from Alcaligenes xylosoxidans and its application for production of a key intermediate for parkinsonism drug. Appl Microbiol Biotechnol 54, 44–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Liu JQ, Odani M, Dairi T, et al. (1999) A new route to L-threo-3-[4-(methylthio)phenylserine], a key intermediate for the synthesis of antibiotics: recombinant low-specificity D-threonine aldolase-catalyzed stereospecific resolution. Appl Microbiol Biotechnol 51, 586–591.PubMedCrossRefGoogle Scholar
  4. 4.
    Herbert RB, Wilkinson B, Ellames GJ, et al. (1993) Stereospecific lysis of a range of β-hydroxy-α-amino acids catalyzed by a novel aldolase from Streptomyces amakusaensis. Chem Commun 205–206.Google Scholar
  5. 5.
    Machajewski TD, and Wong C-H (2000) The catalytic asymmetric aldol reaction. Angew Chem Int Ed 39, 1353–1374.CrossRefGoogle Scholar
  6. 6.
    Liu JQ, Dairi T, Itoh N, et al. (2000) Diversity of microbial threonine aldolases and their application. J Mol Catal B: Enzym 10, 107–115.CrossRefGoogle Scholar
  7. 7.
    Saeed A, and Young DW (1992) Synthesis of L-β-hydroxy amino acids using serine hydroxymethyltransferase. Tetrahedron 48, 2507–2514.CrossRefGoogle Scholar
  8. 8.
    Shibata K, Shingu K, Vassilev VP, et al. (1996) Kinetic and thermodynamic control of L-threonine aldolase catalyzed reaction and its application to the synthesis of mycestericin D. Tetrahedron Lett 37, 2791–2794.CrossRefGoogle Scholar
  9. 9.
    Miura T, and Kajimoto T (2001) Application of L-threonine aldolase-catalyzed reaction to the preparation of protected 3R,5R-dihydroxy-L-homoproline as a mimetic of idulonic acid. Chirality 13, 577–580.PubMedCrossRefGoogle Scholar
  10. 10.
    Hiranuma S, Vassilev VP, Kajimoto T, et al. (1995) Design of oligosaccharide mimetics with higher stability and simpler structures than parent oligosaccharides. RIKEN Review 8, 19–20.Google Scholar
  11. 11.
    Fujii M, Miura T, Kajimoto T, et al. (2000) Facile synthesis of 3,4-dihydroxyprolines as an application of the L-threonine aldolase-catalyzed aldol reaction. Synlett 1046–1048.Google Scholar
  12. 12.
    Vassilev VP, Uchiyama T, Kajimoto T, et al. (1995) An efficient chemo-enzymatic synthesis of α-amino-β-hydroxy-γ-butyrolactone. Tetrahedron Lett 36, 5063–5064.Google Scholar
  13. 13.
    Clapés P, Fessner W-D, Sprenger GA, et al. (2010) Recent progress in stereoselective synthesis with aldolases. Curr Opin Chem Biol 14, 154–167.PubMedCrossRefGoogle Scholar
  14. 14.
    Steinreiber J, Fesko K, Reisinger C, et al. (2007) Threonine aldolases – an emerging tool for organic synthesis. Tetrahedron 63, 918–926.CrossRefGoogle Scholar
  15. 15.
    Vidal L, Calveras J, Clapés P, et al. (2005) Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst. Appl Microbiol Biotechnol 68, 489–497.PubMedCrossRefGoogle Scholar
  16. 16.
    DeMong DE, and Williams RM (2001) An efficient asymmetric synthesis of (2S,3S)- and (2R,3R)-β-hydroxyornithine. Tetrahedron Lett 42, 183–185CrossRefGoogle Scholar
  17. 17.
    Espelt L, Parella T, Bujons J, et al. (2003) Stereoselective aldol additions catalyzed by dihydroxyacetone phosphate dependent aldolases in emulsion systems: preparation and structural characterization of linear and cyclic aminopolyols from aminoaldehydes. Chem Eur J 9, 4887–4899.CrossRefGoogle Scholar
  18. 18.
    Castillo JA, Calveras J, Casas J, et al. (2006) Fructose-6-phosphate aldolase in organic synthesis: preparation of D-fagomine, N-alkylated derivatives, and preliminary biological assays. Org Lett 8, 6067–6070.PubMedCrossRefGoogle Scholar
  19. 19.
    Harada H, Asano O, Kawata T, et al. (2001) 2-Alkynyl-8-aryladenines possessing an amide moiety: their synthesis and structure–activity relationships of effects on hepatic glucose production induced via agonism of the A2B adenosine receptor. Bioorg Med Chem 9, 2709–2726.PubMedCrossRefGoogle Scholar
  20. 20.
    Geall AJ, and Blagbrough IS (2000) Homologation of polyamines in the rapid synthesis of lipospermine conjugates and related lipoplexes. Tetrahedron 56, 2449–2460.CrossRefGoogle Scholar
  21. 21.
    Fernandez S, Brieva R, Rebolledo F, et al. (1992) Lipase-catalyzed enantioselective acylation of N-protected or unprotected 2-aminoalkan-1-ols. J Chem Soc Perkin Trans 1, 2885–2889.CrossRefGoogle Scholar
  22. 22.
    Bischofberger N, Waldmann H, Saito T, et al. (1988) Synthesis of analogs of 1,3-dihydroxyacetone phosphate and glyceraldehyde 3-phosphate for use in studies of fructose-1,6-diphosphate aldolase. J Org Chem 53, 3457–3465.CrossRefGoogle Scholar
  23. 23.
    Espelt L, Clapés P, Esquena J, et al. (2003) Enzymatic carbon–carbon bond formation in water-in-oil highly concentrated (gel emulsions). Langmuir 19, 1337–1346.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Pere Clapés
    • 1
    Email author
  • Jesús Joglar
    • 2
  • Mariana Gutiérrez
    • 2
  1. 1.Department of Chemical Biology and Molecular ModelingInstituto de Química Avanzada de Cataluña IQAC-CSICBarcelonaSpain
  2. 2.Department of Chemical Biology and Molecular ModelingInstituto de Química Avanzada de Cataluña-CSICBarcelonaSpain

Personalised recommendations