Skip to main content

Enzymatic Production of Enantiopure Amino Acids from Mono-substituted Hydantoin Substrates

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 794))

Abstract

Biocatalytic conversion of 5-substituted hydantoin derivatives is an efficient method for the production of unnatural enantiomerically pure amino acids. The enzymes required to carry out this hydrolysis occur in a wide variety of eubacterial species each of which exhibit variations in substrate selectivity, enantiospecificity, and catalytic efficiency. Screening of the natural environment for bacterial strains capable of utilizing hydantoin as a nutrient source (as opposed to rational protein design of known enzymes) is a cost-effective and valuable approach for isolating microbial species with novel hydantoin-hydrolysing enzyme systems. Once candidate microbial isolates have been identified, characterization and optimization of the activity of target enzyme systems can be achieved by subjecting the hydantoin-hydrolysing system to physicochemical manipulations aimed at the enzymes activity within the natural host cells, expressed in a heterologous host, or as purified enzymes. The latter two options require knowledge of the genes encoding for the hydantoin-hydrolysing enzymes. This chapter describes the methods that can be used in conducting such development of hydantoinase-based biocatalytic routes for production of target amino acids.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zaks A and Dodds DR (1997) Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Discovery Today 2, 513–531.

    Article  CAS  Google Scholar 

  2. Bommarius AS, Schwarm M and Drauz K (1998) Biocatalysis to amino acid-based chiral pharmaceuticals – examples and perspectives. J Mol Catal B Enzym 5, 1–11.

    Article  CAS  Google Scholar 

  3. Maier NM, Franco P and Lindner W (2001) Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A 906, 3–33.

    Article  PubMed  CAS  Google Scholar 

  4. Koeller KM and Wong C (2001) Enzymes for chemical synthesis. Nature 409, 232–240.

    Article  PubMed  CAS  Google Scholar 

  5. Azerad R (1995) Application of biocatalysis in organic synthesis. Bull Soc Chim Fr 132, 17–51.

    CAS  Google Scholar 

  6. Altenbuchner J, Siemann-Herzberg M and Syldatk C. (2001) Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr Opin Biotechnol 12, 559–563.

    Article  PubMed  CAS  Google Scholar 

  7. Schmid A, Dordick JS, Hauer B, et al. (2001) Industrial biocatalysis today and tomorrow. Nature 409, 258–268.

    Article  PubMed  CAS  Google Scholar 

  8. Smith R, Pietzsch M, Waniek T, et al. (2001) Enzymatic synthesis of enantiomerically enriched D- and L-3-silated alanines by deracemization of DL-5-silylmethylated hydantoins. Tetrahedron: Asymmetry 12, 157–165.

    Article  CAS  Google Scholar 

  9. Ogawa J, Ryono A, Xie S, et al. (1999) β-carbon stereoselectivity of N-carbamoyl-D-α-amino acid amidohydrolase for α,β-diastereomeric amino acids. Appl Microbiol Biotechnol 52, 801.

    Article  Google Scholar 

  10. Ogawa J, Ryono A, Xie S, et al. (1999) Simultaneous recognition of two chiral centres in α,β-diastereomeric amino acids by an N-carbamoyl-L-α-amino acid amidohydrolase from Alcaligenes xylosoxidans. Biotechnol Lett 21, 711–713.

    Article  CAS  Google Scholar 

  11. Ogawa J, Ryono A, Xie S, et al. (2001) Separative preparation of the four stereoisomers of β-methylphenylalanine with N-carbamoyl amino acid amidohydrolases. J Mol Catal B Enzym 12, 71–75.

    Article  CAS  Google Scholar 

  12. Syldatk C, May O, Altenbuchner J, et al. (1999) Microbial hydantoinases – industrial enzymes from the origin of life? Appl Microbiol Biotechnol 51, 293–309.

    Article  PubMed  CAS  Google Scholar 

  13. Ogawa J and Shimizu S (2002) Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in Japan. Curr Opin Biotechol 13, 367–375.

    Article  CAS  Google Scholar 

  14. Syldatk C, Mackowiak V, Hoke H, et al. (1990) Cell growth and enzyme synthesis of a mutant of Arthrobacter sp. (DSM 3747) used for the production of L-amino acids from D,L-5- monosubstituted hydantoins. J Biotechnol 14, 345–362.

    Article  PubMed  CAS  Google Scholar 

  15. Syldatk C and Pietzsch M (1995) Hydrolysis and formation of hydantoins. in Enzyme catalysis in organic synthesis – A comprehensive handbook. Vol. 1. Eds. Drauz K. & Waldmann H., VCH Publishers Inc. Weinheim, pp. 409–431.

    Google Scholar 

  16. Matcher GF (2004) Characterization of the hydantoin-hydrolysing system of Pseudomonas putida RU-KM3s. PhD Thesis, Rhodes University, South Africa.

    Google Scholar 

  17. Sambrook J, Margolin A, Russell A and Klibanov A (1989) Molecular Cloning – A laboratory manual. Cold Spring Harbor Press, New York.

    Google Scholar 

  18. Santos P, Bartolo I, Blatny J, et al. (2001) New broad-host-range promoter probe vectors based on the plasmid RK2 replicon. FEMS Microbiol Lett 195, 91–96.

    Article  PubMed  CAS  Google Scholar 

  19. Lee DC, Lee SG, Hong SP, et al. (1996) Cloning and overexpression of thermostable D-hydantoinase from thermophile in E. coli and its application to the synthesis of optically active D-amino acids. Ann N Y Acad Sci 799, 401–405.

    Article  PubMed  CAS  Google Scholar 

  20. Chao YP, Fu H, Lo TE, et al. (1999) One-step production of D-p-hydroxyphenylglycine by recombinant Escherichia coli strains. Biotechnol Prog 15, 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  21. Ikenaka Y, Nanba H, Yamada Y, et al. (1998) Screening, characterization, and cloning of the gene for N-carbamyl-D-amino acid amidohydrolase from thermotolerant soil bacteria. Biosci Biotechol Biochem 62, 882–886.

    Article  CAS  Google Scholar 

  22. Mukohara Y, Ishikawa T, Watabe K and Nakamura H (1994) A thermostable hydantoinase of Bacillus stearothermophilus NS1122A: Cloning, sequencing, and high expression of the enzyme gene, and some properties of the expressed enzyme. Biosci Biotechol Biochem 58, 1621–1626.

    Article  CAS  Google Scholar 

  23. Chien HR, Jih Y, Yang W and Hsu W (1998) Identification of the open reading frame for the Pseudomonas putida D-hydantoinase gene and expression of the gene in Escherichia coli. Biochim Biophys Acta 1395, 68–77.

    PubMed  CAS  Google Scholar 

  24. Buson A, Negro A, Grassato L, et al. (1996) Identification, sequencing and mutagenesis of the gene for a D-carbamoylase from Agrobacterium radiobacter. FEMS Microbiol Lett 145, 55–62.

    PubMed  CAS  Google Scholar 

  25. Park JH, Kim GJ and Kim HS (2000) Production of D-amino acid using whole cells of recombinant Escherichia coli with separately and coexpressed D-hydantoinase and N-carbamoylase. Biotechnol Prog 16, 564–570.

    Article  PubMed  CAS  Google Scholar 

  26. Oh K, Nam S and Kim HS (2002) Improvement of oxidative and thermostability of N-carbamyl-D-amino acid amidohydrolase by directed evolution. Protein Eng 15, 689–695.

    Article  PubMed  CAS  Google Scholar 

  27. Oh K, Nam S and Kim HS (2002) Directed evolution of N-carbamyl-D-amino acid amidohydrolase for simultaneous improvement of oxidative and thermal stability. Biotechnol Prog 18, 413–417.

    Article  PubMed  CAS  Google Scholar 

  28. May O, Nguyen PT and Arnold FH (2000) Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine. Nature Biotechnol 18, 317–320.

    Article  CAS  Google Scholar 

  29. Kim GJ, Cheon YH and Kim HS (2000) Directed evolution of a novel N-carbamoylase/D-hydantoinase fusion enzyme for functional expression with enhanced stability. Biotechnol Bioeng 68, 211–217.

    Article  PubMed  CAS  Google Scholar 

  30. Pietzsch M, Wiese A, Ragnitz K, et al. (2000) Purification of recombinant hydantoinase and L-N-carbamoylase from Arthrobacter aurescens expressed in Escherichia coli: comparison of wild-type and genetically modified proteins. J Chromatog B 737, 179–186.

    Article  CAS  Google Scholar 

  31. Kim GJ, Lee DE and Kim HS (2000) Functional expression and characterization of the two cyclic amidohydrolase enzymes, allontoinase and a novel phenylhydantoinase, from Escherichia coli. J Bacteriol 182, 7021–7028.

    Article  PubMed  CAS  Google Scholar 

  32. Chao YP, Chiang CJ, Lo TE and Fu H (2000a) Overproduction of D-hydantoinase and carbamoylase in a soluble form in Escherichia coli. Appl Microbiol Biotechnol 54, 348–353.

    Article  PubMed  CAS  Google Scholar 

  33. Hils M, Munch P, Altenbuchner J, et al. (2001) Cloning and characterization of genes from Agrobacterium sp. IP I-671 involved in hydantoin degradation. Appl Microbiol Biotechnol 57, 680–688.

    Article  PubMed  CAS  Google Scholar 

  34. Wilms B, Wiese A, Syldatk C, et al. (2001) Development of an Escherichia coli whole cell biocatalyst for the production of L-amino acids. J Biotechnol 86, 19–30.

    Article  PubMed  CAS  Google Scholar 

  35. Dennis J and Zylstra G (1998) Plasposons: Modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64, 2710–2715.

    PubMed  CAS  Google Scholar 

  36. DeLorenzo V and Timmis K (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons in Methods in Enzymology, Eds. Clark V.L. and Bavoil P.M. Academic Press, San Diego 235, 386–405.

    CAS  Google Scholar 

  37. Matcher GF, Burton SG and Dorrington RA (2004) Mutational analysis of the hydantoin hydrolysis pathway in Pseudomonas putida RU-KM3s. Appl Microbiol Biotechnol 65, 391–400.

    Article  PubMed  CAS  Google Scholar 

  38. Buchanan K, Burton SG, Dorrington RA, et al. (2001) A novel Pseudomonas putida strain with high levels of hydantoin-converting activity, producing L-amino acids. J Mol Catal B Enzym 11, 397–406.

    Article  CAS  Google Scholar 

  39. Hartley CJ, Kirchmann S, Burton SG and Dorrington RA (1998) Production of D-amino acids from D,L-5-substituted hydantoins by an Agrobacterium tumefaciens strain and isolation of a mutant with inducer independent expression of hydantoin hydrolysing activity. Biotechnol Lett 20, 707–711.

    Article  CAS  Google Scholar 

  40. Ausubel FM, Brent R, Kingston RE, et al. (1983) Current protocols in molecular biology. Third edition. Wiley-Interscience, New York.

    Google Scholar 

  41. Mukohara Y, Ishikawa T, Watabe K and Nakamura H (1993) Molecular cloning and sequencing of the gene for a thermostable N-carbamyl-L-amino acid amidohydrolase from Bacillus stearothermophilus strain NS1122A. Biosci Biotechol Biochem 57, 1935–1937.

    Article  CAS  Google Scholar 

  42. Nanba H, Ikenaka Y, Yamada Y, et al. (1998) Isolation of Agrobacterium sp. strain KNK712 that produces N-carbamyl-D-amino amidohydrolase, cloning of the gene for this enzyme, and properties of the enzyme. Biosci Biotechol Biochem 62, 875–881.

    Article  CAS  Google Scholar 

  43. Wiese A, Syldatk C, Mattes R and Altenbuchner J (2001) Organization of genes responsible for the stereospecific conversion of hydantoins to α-amino acids in Arthrobacter aurescens DSM 3747. Arch Microbiol 176, 187–196.

    Article  PubMed  CAS  Google Scholar 

  44. Jiwaji M, Hartley CJ, Clark SA, et al. (2009) Enhanced hydantoin-hydrolyzing enzyme activity in an Agrobacterium tumefaciens strain with two distinct N-carbamoylases. Enzyme Microb Techol 44, 203–209.

    Article  CAS  Google Scholar 

  45. Hartley CJ, Manford F, Burton SG and Dorrington RA (2001) Over-production of hydantoinase and N-carbamylamino acid amidohydrolase enzymes by regulatory mutants of Agrobacterium tumefaciens. Appl Microbiol Biotechnol 57, 43–49.

    Article  PubMed  CAS  Google Scholar 

  46. Ishikawa T, Mukohara Y, Watabe K. et al. (1994) Microbial conversion of DL-5-substituted hydantoins to the corresponding L-amino acids by Bacillus stearothermophilus NS1122A. Biosci Biotechol Biochem 58, 265–270.

    Article  CAS  Google Scholar 

  47. Kim G.J, Park JH, Lee DC, et al. (1997) Primary structure, sequence analysis, and expression of the thermostable D-hydantoinase from Bacillus stearothermophilus SD-1. Mol Gen Genet 255, 152–156.

    PubMed  CAS  Google Scholar 

  48. LaPointe G, Viau S, Leblanc D, et al. (1994) Cloning, sequencing, and expression in Escherichia coli of the D-hydantoinase gene from Pseudomonas putida and distribution of homologous genes in other microorganisms. Appl Environ Microbiol 60, 888–895.

    PubMed  CAS  Google Scholar 

  49. Snyder L and Champness W (2003) Molecular genetics of bacteria. 2nd edition, ASM Press, Washington, 187–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie G. Burton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matcher, G.F., Dorrington, R.A., Burton, S.G. (2012). Enzymatic Production of Enantiopure Amino Acids from Mono-substituted Hydantoin Substrates. In: Pollegioni, L., Servi, S. (eds) Unnatural Amino Acids. Methods in Molecular Biology, vol 794. Humana Press. https://doi.org/10.1007/978-1-61779-331-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-331-8_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-330-1

  • Online ISBN: 978-1-61779-331-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics