Enzymes Acting on d-Amino Acid Containing Peptides

  • Yasuhisa AsanoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 794)


Using a synthetic oligopeptide (d-Phe)4, a microorganism Bacillus cereus DF4-B producing alkaline d-peptidase (ADP) was isolated. The enzymatic properties have been characterized; the enzyme showed d-stereospecific dipeptidyl aminopeptidase and endopeptidase activities. The enzyme was active toward (d-Phe) n , Boc-(d-Phe) n , (d-Phe) n methyl ester, d-Phe-NH2, Boc-(d-Phe) n methyl ester, and Boc-(d-Phe) n tert-butyl ester, but not toward (d-Ala) n (n = 2–4), (d-Val)3, and (d-Leu)2.

Key words

d-Amino acid Alkaline d-peptidase Bacillus cereus 


  1. 1.
    Asano Y (2010) Tools for enzyme discovery. Industrial enzymes, biocatalysis and enzyme evolution. In: Baltz R H, Davies J E, Demain A (eds) Manual of Industrial Microbiology and Biotechnology, 3rd edn. American Society for Microbiology, pp 441–452.Google Scholar
  2. 2.
    Glowaky R C, Hendrick M E, Smiles R E, Torres A (1991) Development and uses of alitame. A novel dipeptide amide sweetener. ACS Symp. Ser. 450, Sweeteners, 57–67.Google Scholar
  3. 3.
    Montavon T J, Bruner S D (2010) Nonribosomal peptide synthetases. In: Vederas J C (ed) Comprehensive natural products II, Chemistry and Biology, Vol 5, pp 619–655.Google Scholar
  4. 4.
    Jilek A, Mollay C, Tippelt C et al. (2005) Biosynthesis of a D-amino acid in peptide linkage by an enzyme from frog skin secretions. Proc Natl Acad Sci USA 102, 4235–4239.Google Scholar
  5. 5.
    Krell G (1994) Conversion of L- to D-amino acids: posttranslational reaction. Science 266, 996–997.Google Scholar
  6. 6.
    Asano A, Yamaguchi S (2005) Dynamic kinetic resolution of amino acid amide catalyzed by D-aminopeptidase and α-amino-ε-caprolactam racemase. J Am Chem Soc 127, 7696–7697.Google Scholar
  7. 7.
    Wehofsky N, Pech A, Liebscher S et al. (2008) D-amino acid specific proteases and native all-L-proteins: a convenient combination for semisynthesis. Angew Chem Int Ed Engl 47, 5456–5460.Google Scholar
  8. 8.
    Frère J-M, Joris B, Dideberg O et al. (1988) Penicillin-recognizing enzymes. Biochem Soc Trans 16, 934–938.Google Scholar
  9. 9.
    Maniatis T, Fritsch E F, Sambrook J (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  10. 10.
    Tarbell D S, Yamamoto Y, Pope B M (1972) New method to prepare N-t-butoxycarbonyl derivatives and the corresponding sulfur analogs from di-t-butyl dicarbonate or di-t-butyl dithiol dicarbonates and amino acids. Proc Natl Acad Sci USA 69, 730–732.Google Scholar
  11. 11.
    Ito M, Hagiwara D, Kamiya T (1977) Peptides. VI. Some oxime carbonates as novel t-butoxycarbonylating reagents. Bull Chem Soc Jpn 50, 718–721.Google Scholar
  12. 12.
    Arndt F (1943) Organic Syntheses, Coll. Vol. 2, 165.Google Scholar
  13. 13.
    Altman J, Shoef N, Wilchek M, Warshawsky A (1983). Bifunctional chelating agents. Part 1. 1-(p-Aminophenethyl)-ethylenediaminetetra-acetic acid. J. Chem. Soc. Perkin Trans I 365–368.Google Scholar
  14. 14.
    Vaughan J R Jr, Osato R L (1952) The preparation of peptides using mixed carbonic-carboxylic acid anhydrides. J Am Chem Soc 74, 676–678.Google Scholar
  15. 15.
    Sheehan J C, Preston J, Cruikshank P A (1965) A rapid synthesis of oligopeptide derivatives without isolation of intermediates. J Am Chem Soc 87, 2492–2493.Google Scholar
  16. 16.
    Asano Y, Ito H, Dairi T, Kato Y (1996) An alkaline D-stereospecific endopeptidase with beta-lactamase activity from Bacillus cereus. J Biol Chem 271, 30256–30262.Google Scholar
  17. 17.
    Duez C, Piron-Fraipont C, Joris B et al. (1987) Primary structure of the Streptomyces R61 extracellular DD-peptidase. Eur J Biochem 162, 509–518.Google Scholar
  18. 18.
    Asano Y, Kato Y, Nakazawa A, Kondo K (1992) Structural similarity of D-aminopeptidase to carboxypeptidase DD and β-lactamase. Biochemistry 31, 2316–2328.Google Scholar
  19. 19.
    Komeda H, Asano Y (2003) Genes for an alkaline D-stereospecific endopeptidase and its homologue are located in tandem on Bacillus cereus genome. FEMS Microbiol Lett 228, 1–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Biotechnology Research Center and Department of BiotechnologyToyama Prefectural UniversityToyamaJapan

Personalised recommendations