Assay of Amino Acid Racemases

  • Masumi Katane
  • Masae Sekine
  • Hiroshi HommaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 794)


d-Amino acids play important physiological roles in the mammalian body. Recent investigations revealed that, in mammals, d-amino acids are synthesized from their corresponding l-enantiomers via amino acid racemase. This article describes a method used to measure amino acid racemase activity by high-performance liquid chromatography (HPLC). The assay involves fluorogenic chiral derivatization of amino acids with a newly developed reagent, and enantioseparation of d- and l-amino acid derivatives by HPLC. The method is accurate and reliable, and can be automated using a programmable autosampling injector.

Key words

d-Amino acid Racemase Enantioseparation Chiral derivatization High-performance liquid chromatography 


  1. 1.
    Konno R, Brückner H, D’Aniello et al. (2007) D-Amino acids: a new frontier in amino acids and protein research, practical methods and protocols. Nova Science Publishers, Inc., New York.Google Scholar
  2. 2.
    Nishikawa T (2005) Metabolism and functional roles of endogenous D-serine in mammalian brains. Biol Pharm Bull 28, 1561–1565.PubMedCrossRefGoogle Scholar
  3. 3.
    Scolari M J, Acosta G B (2007) D-Serine: a new word in the glutamatergic neuro-glial language. Amino Acids 33, 563–574.PubMedCrossRefGoogle Scholar
  4. 4.
    D’Aniello A (2007) D-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Brain Res Rev 53, 215–234.CrossRefGoogle Scholar
  5. 5.
    Homma H (2007) Biochemistry of D-aspartate in mammalian cells. Amino Acids 32, 3–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Wolosker H, Sheth K N, Takahashi M et al. (1999) Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci USA 96, 721–725.PubMedCrossRefGoogle Scholar
  7. 7.
    Wolosker H, Blackshaw S, Snyder S H (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 96, 13409–13414.PubMedCrossRefGoogle Scholar
  8. 8.
    De Miranda J, Santoro A, Engelender S, Wolosker H (2000) Human serine racemase: molecular cloning, genomic organization and functional analysis. Gene 256, 183–188.PubMedCrossRefGoogle Scholar
  9. 9.
    Konno R (2003) Rat cerebral serine racemase: amino acid deletion and truncation at carboxy terminus. Neurosci Lett 349, 111–114.PubMedCrossRefGoogle Scholar
  10. 10.
    Baumgart F, Mancheño J M, Rodríguez-Crespo I (2007) Insights into the activation of brain serine racemase by the multi-PDZ domain glutamate receptor interacting protein, divalent cations and ATP. FEBS J 274, 4561–4571.PubMedCrossRefGoogle Scholar
  11. 11.
    Cook S P, Galve-Roperh I, Martinez del Pozo A, Rodríguez-Crespo I (2002) Direct calcium binding results in activation of brain serine racemase. J Biol Chem 277, 27782–27792.PubMedCrossRefGoogle Scholar
  12. 12.
    De Miranda J, Panizzutti R, Foltyn V N, Wolosker H (2002) Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. Proc Natl Acad Sci USA 99, 14542–14547.PubMedCrossRefGoogle Scholar
  13. 13.
    Foltyn V N, Bendikov I, De Miranda J et al. (2005) Serine racemase modulates intracellular D-serine levels through an α,β-elimination activity. J Biol Chem 280, 1754–1763.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoffman H E, Jirásková J, Ingr M et al. (2009) Recombinant human serine racemase: enzymologic characterization and comparison with its mouse ortholog. Protein Expr Purif 63, 62–67.PubMedCrossRefGoogle Scholar
  15. 15.
    Nagayoshi C, Ishibashi M, Tokunaga M (2009) Purification and characterization of human brain serine racemase expressed in moderately halophilic bacteria. Protein Pept Lett 16, 201–206.PubMedCrossRefGoogle Scholar
  16. 16.
    Panizzutti R, De Miranda J, Ribeiro C S et al. (2001) A new strategy to decrease N-methyl-D-aspartate (NMDA) receptor coactivation: inhibition of D-serine synthesis by converting serine racemase into an eliminase. Proc Natl Acad Sci USA 98, 5294–5299.PubMedCrossRefGoogle Scholar
  17. 17.
    Strísovsky K, Jirásková J, Barinka C et al. (2003) Mouse brain serine racemase catalyzes specific elimination of L-serine to pyruvate. FEBS Lett 535, 44–48.PubMedCrossRefGoogle Scholar
  18. 18.
    Strísovsky K, Jirásková J, Mikulová A et al. (2005) Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the β-eliminase activity. Biochemistry 44, 13091–13100.PubMedCrossRefGoogle Scholar
  19. 19.
    Smith M A, Mack V, Ebneth A et al. (2010) The structure of mammalian serine ­racemase: evidence for conformational changes upon inhibitor binding. J Biol Chem 285, 12873–12881.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang L-Z, Zhu X-Z (2003) Spatiotemporal relationships among D-serine, serine racemase, and D-amino acid oxidase during mouse postnatal development. Acta Pharmacol Sin 24, 965–974.PubMedGoogle Scholar
  21. 21.
    Xia M, Liu Y, Figueroa D J et al. (2004) Characterization and localization of a human serine racemase. Brain Res Mol Brain Res 125, 96–104.PubMedCrossRefGoogle Scholar
  22. 22.
    Yoshikawa M, Kobayashi T, Oka T et al. (2004) Distribution and MK-801-induced expression of serine racemase mRNA in rat brain by real-time quantitative PCR. Brain Res Mol Brain Res 128, 90–94.PubMedCrossRefGoogle Scholar
  23. 23.
    Miya K, Inoue R, Takata, Y et al. (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510, 641–654.PubMedCrossRefGoogle Scholar
  24. 24.
    Ding X, Ma N, Nagahama M et al. (2011) Localization of D-serine and serine racemase in neurons and neuroglias in mouse brain. Neuro Sci. 96, 157–163.Google Scholar
  25. 25.
    Kartvelishvily E, Shleper M, Balan L et al. (2006) Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 281, 14151–14162.PubMedCrossRefGoogle Scholar
  26. 26.
    Verrall L, Walker M, Rawlings N et al. (2007) D-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26, 1657–1669.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshikawa M, Nakajima K, Takayasu N et al. (2006) Expression of the mRNA and protein of serine racemase in primary cultures of rat neurons. Eur J Pharmacol 548, 74–76.PubMedCrossRefGoogle Scholar
  28. 28.
    Yoshikawa M, Takayasu N, Hashimoto T et al. (2007) The serine racemase mRNA is predominantly expressed in rat brain neurons. Arch Histol Cytol 70, 127–134.PubMedCrossRefGoogle Scholar
  29. 29.
    Basu A C, Tsai G E, Ma C-L et al. (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14, 719–727.PubMedCrossRefGoogle Scholar
  30. 30.
    Labrie V, Fukumura R, Rastogi A et al. (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18, 3227–3243.PubMedCrossRefGoogle Scholar
  31. 31.
    Long Z, Homma H, Lee J-A et al. (1998) Biosynthesis of D-aspartate in mammalian cells. FEBS Lett 434, 231–235.PubMedCrossRefGoogle Scholar
  32. 32.
    Long Z, Lee J-A, Okamoto T et al. (2000) D-Aspartate in a prolactin-secreting clonal strain of rat pituitary tumor cells (GH3). Biochem Biophys Res Commun 276, 1143–1147.PubMedCrossRefGoogle Scholar
  33. 33.
    Wolosker H, D’Aniello A, Snyder S H (2000) D-Aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100, 183–189.PubMedCrossRefGoogle Scholar
  34. 34.
    Long Z, Sekine M, Adachi M et al. (2002) Cell density inversely regulates D- and L-aspartate levels in rat pheochromocytoma MPT1 cells. Arch Biochem Biophys 404, 92–97.PubMedCrossRefGoogle Scholar
  35. 35.
    Kim P M, Duan X, Huang A S et al. (2010) Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA 107, 3175–3179.PubMedCrossRefGoogle Scholar
  36. 36.
    Sakai K, Homma H, Lee J-A et al. (1998) Emergence of D-aspartic acid in the differentiating neurons of the rat central nervous system. Brain Res 808, 65–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Wood W A, Gunsalus I C (1951) D-Alanine formation; a racemase in Streptococcus faecalis. J Biol Chem 190, 403–416.PubMedGoogle Scholar
  38. 38.
    Yoshimura T, Esak N (2003) Amino acid racemases: functions and mechanisms. J Biosci Bioeng 96, 103–109.PubMedGoogle Scholar
  39. 39.
    Yoshimura T, Goto M (2008) D-Amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases. FEBS J 275, 3527–3537.PubMedCrossRefGoogle Scholar
  40. 40.
    Reina-San-Martín B, Degrave W, Rougeot C et al. (2000) A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. Nat Med 6, 890–897.PubMedCrossRefGoogle Scholar
  41. 41.
    Yokoyama T, Tanaka Y, Sato Y et al. (2005) Alanine racemase activity in the microalga Thalassiosira sp. Fish Sci 71, 924–930.CrossRefGoogle Scholar
  42. 42.
    Nishimura K, Tomoda Y, Nakamoto Y et al. (2007) Alanine racemase from the green alga Chlamydomonas reinhardtii. Amino Acids 32, 59–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Hoffmann K, Schneider-Scherzer E, Kleinkauf H, Zocher R (1994) Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis. J Biol Chem 269, 12710–12714.PubMedGoogle Scholar
  44. 44.
    Cheng Y-Q, Walton J D (2000) A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis. J Biol Chem 275, 4906–4911.PubMedCrossRefGoogle Scholar
  45. 45.
    Uo T, Yoshimura T, Tanaka N et al. (2001) Functional characterization of alanine racemase from Schizosaccharomyces pombe: a eucaryotic counterpart to bacterial alanine racemase. J Bacteriol 183, 2226–2233.PubMedCrossRefGoogle Scholar
  46. 46.
    Fujita E, Okuma E, Abe H (1997) Partial purification and properties of alanine racemase from the muscle of black tiger prawn Penaeus monodon. Fish Sci 63, 440–445.Google Scholar
  47. 47.
    Yoshikawa N, Dhomae N, Takio K, Abe H (2002) Purification, properties, and partial amino acid sequences of alanine racemase from the muscle of the black tiger prawn Penaeus monodon. Comp Biochem Physiol B Biochem Mol Biol 133, 445–453.PubMedCrossRefGoogle Scholar
  48. 48.
    Uo T, Ueda M, Nishiyama T et al. (2001) Purification and characterization of alanine racemase from hepatopancreas of black-tiger prawn, Penaeus monodon. J Mol Catal B Enzym 12, 137–144.CrossRefGoogle Scholar
  49. 49.
    Shibata K, Shirasuna K, Motegi K et al. (2000) Purification and properties of alanine racemase from crayfish Procambarus clarkii. Comp Biochem Physiol B Biochem Mol Biol 126, 599–608.PubMedCrossRefGoogle Scholar
  50. 50.
    Matsushima O, Katayama H, Yamada K, Kado Y (1984) Occurrence of free D-alanine and alanine racemase activity in bivalve molluscs with special reference to intracellular osmoregulation. Mar Biol Lett 5, 217–225.Google Scholar
  51. 51.
    Omura Y, Hayashi Y S, Matsushima O et al. (1985) Partial purification and characterization of alanine racemase from the brackish-water bivalve Corbicula japonica. J Exp Mar Biol Ecol 94, 281–289.CrossRefGoogle Scholar
  52. 52.
    Nomura T, Yamamoto I, Morishita F et al. (2001) Purification and some properties of alanine racemase from a bivalve mollusc Corbicula japonica. J Exp Zool 289, 1–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Ono K, Yanagida K, Oikawa T et al. (2006) Alanine racemase of alfalfa seedlings (Medicago sativa L.): first evidence for the presence of an amino acid racemase in plants. Phytochemistry 67, 856–860.PubMedCrossRefGoogle Scholar
  54. 54.
    Panizzutti R, de Souza Leite M, Pinheiro C M, Meyer-Fernandes J R (2006) The occurrence of free D-alanine and an alanine racemase activity in Leishmania amazonensis. FEMS Microbiol Lett 256, 16–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Rekoslavskaya N I, Yur’eva O V, Shibanova L A, Salyaev R K (1997) Synthesis and physiological function of D-tryptophan during wheat germination. Russ J Plant Physiol 44, 227–234.Google Scholar
  56. 56.
    Uo T, Yoshimura T, Shimizu S, Esaki N (1998) Occurrence of pyridoxal 5′-phosphate-dependent serine racemase in silkworm, Bombyx mori. Biochem Biophys Res Commun 246, 31–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Yamauchi T, Goto M, Wu H Y et al. (2009) Serine racemase with catalytically active lysinoalanyl residue. J Biochem 145, 421–424.PubMedCrossRefGoogle Scholar
  58. 58.
    Fujitani Y, Nakajima N, Ishihara K et al. (2006) Molecular and biochemical characterization of a serine racemase from Arabidopsis thaliana. Phytochemistry 67, 668–674.PubMedCrossRefGoogle Scholar
  59. 59.
    Gogami Y, Ito K, Kamitani Y et al. (2009) Occurrence of D-serine in rice and characterization of rice serine racemase. Phytochemistry 70, 380–387.PubMedCrossRefGoogle Scholar
  60. 60.
    Fujitani Y, Horiuchi T, Ito K, Sugimoto M (2007) Serine racemases from barley, Hordeum vulgare L., and other plant species represent a distinct eukaryotic group: gene cloning and recombinant protein characterization. Phytochemistry 68, 1530–1536.PubMedCrossRefGoogle Scholar
  61. 61.
    Shibata K, Watanabe T, Yoshikawa H et al. (2003) Purification and characterization of aspartate racemase from the bivalve mollusk Scapharca broughtonii. Comp Biochem Physiol B Biochem Mol Biol 134, 307–314.PubMedCrossRefGoogle Scholar
  62. 62.
    Aswad D W (1984) Determination of D- and L-aspartate in amino acid mixtures by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. Anal Biochem 137, 405–409.PubMedCrossRefGoogle Scholar
  63. 63.
    Hashimoto A, Nishikawa T, Oka T et al. (1992) Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-L-cysteine and o-phthaldialdehyde. J Chromatogr 582, 41–48.PubMedCrossRefGoogle Scholar
  64. 64.
    Nimura N, Kinoshita T (1986) o-Phthalaldehyde–N-acetyl-l-cysteine as a chiral derivatization reagent for liquid chromatographic optical resolution of amino acid enantiomers and its application to conventional amino acid analysis. J Chromatogr 352, 169–177.CrossRefGoogle Scholar
  65. 65.
    Nimura N, Fujiwara T, Watanabe A et al. (2003) A novel chiral thiol reagent for automated precolumn derivatization and high-performance liquid chromatographic enantioseparation of amino acids and its application to the aspartate racemase assay. Anal Biochem 315, 262–269.PubMedCrossRefGoogle Scholar
  66. 66.
    Long Z, Lee J-A, Okamoto T. et al. (2001) Occurrence of D-amino acids and a pyridoxal 5′-phosphate-dependent aspartate racemase in the acidothermophilic archaeon, Thermoplasma acidophilum. Biochem Biophys Res Commun 281, 317–321.PubMedCrossRefGoogle Scholar
  67. 67.
    Yasuda M, Oyaizu H, Yamagishi A, Oshima T (1995) Morphological variation of new Thermoplasma acidophilum isolates from Japanese hot springs. Appl Environ Microbiol 61, 3482–3485.PubMedGoogle Scholar
  68. 68.
    Funakoshi M, Sekine M, Katane M et al. (2008) Cloning and functional characterization of Arabidopsis thaliana D-amino acid aminotransferase-D-aspartate behavior during germination. FEBS J 275, 1188–1200.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Pharmaceutical Life SciencesKitasato UniversityMinatokuJapan

Personalised recommendations