Advertisement

Biosensors for d-Amino Acid Detection

  • Silvia SacchiEmail author
  • Elena Rosini
  • Laura Caldinelli
  • Loredano Pollegioni
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 794)

Abstract

The presence of d-amino acids in foods is promoted by harsh technological processes (e.g., high temperature or extreme pH values) or can be the consequence of adulteration or microbial contamination (d-amino acids are major components of the bacterial cell wall). For this reason, quality control is becoming more and more important both for the industry (as a cost factor) and for consumer protection. For routine food analysis and quality control, simple and easily applicable analytical methods are needed: biosensors can often satisfy these requirements. The use of an enzymatic, stereospecific reaction could confer selectivity to a biosensor for detecting and quantifying d-amino acids in foodstuffs. The flavoenzyme d-amino acid oxidase from the yeast Rhodotorula gracilis is an ideal biocatalyst for this kind of application because of its absolute stereospecificity, very high turnover number with various substrates, tight binding with the FAD cofactor, and broad substrate specificity.

Furthermore, alterations in the local brain concentrations of d-serine (predominantly d-amino acid in the mammalian central nervous system) have been related to several neurological and psychiatric diseases. Therefore, quantifying this neuromodulator represents an important task in biological, medical, and pharmaceutical research. Recently, an enzymatic microbiosensor, also using R. gracilis d-amino acid oxidase as biocatalyst, was developed for detecting d-serine in vivo.

Key words

Amperometric detection d-Amino acid oxidase d-Serine Food quality Analytical detection 

Notes

Acknowledgments

The work reported in this paper was supported by grants from Fondo di Ateneo per la Ricerca (University of Insubria) to S. Sacchi and L. Pollegioni and from Fondazione Cariplo and Regione Lombardia (bando Cooperazioni Scientifiche Internazionali) to L. Pollegioni. We thank Carlo Rossetti, Jean-Pierre Mothet, and Stéphane Marinesco who over the years have actively contributed to the evolution of DAAO-based biosensors.

References

  1. 1.
    Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69, 1–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Friedman M (1999) Chemistry, nutrition, and microbiology of D-amino acids. J Agric Food Chem 47, 3457–3479.PubMedCrossRefGoogle Scholar
  3. 3.
    Friedman M (2010) Origin, microbiology, nutrition, and pharmacology of D-amino acids. Chem Biodivers 7, 1491–1530.PubMedCrossRefGoogle Scholar
  4. 4.
    Gobbetti M, Simonetti M S, Rossi J et al. (1994) Free D- and L-amino acid evolution during sourdough fermentation and baking. J Food Sci 59, 881–884.CrossRefGoogle Scholar
  5. 5.
    Casal S, Mendes E, Oliveira M B P P, Ferreira M A (2005) Roast effects on coffee amino acid enantiomers. Food Chem 89, 333–340.CrossRefGoogle Scholar
  6. 6.
    Gandolfi I, Palla G, Marchelli R et al. (1994) D-alanine in fruit juices: a molecular marker of bacterial activity, heat treatment and shelf-life. J Food Sci 59, 152–154.CrossRefGoogle Scholar
  7. 7.
    Pätzold R, Brückner H (2006) Gas chromatographic determination and mechanism of formation of D-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids 31, 63–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Carlavilla D, Moreno-Arribas M V, Fanali S, Cifuentes A (2006) Chiral MEKC-LIF of amino acids in foods: analysis of vinegars. Electrophoresis 27, 2551–2557.PubMedCrossRefGoogle Scholar
  9. 9.
    Ali H S, Pätzold R, Brückner H (2010) Gas chromatographic determination of amino acid enantiomers in bottled and aged wines. Amino Acids 38, 951–958.PubMedCrossRefGoogle Scholar
  10. 10.
    Csapó J, Varga-Visi E, Lóki K, Albert C (2006) The influence of manufacture on the free D-amino acid content of Cheddar cheese. Amino Acids 32, 39–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Marchelli R, Galaverna G, Dossena A et al. (2006) D-Amino acids in food. In: Konno R, Brückner H, D’Aniello A, Fisher G, Fujii N, Homma H (eds), D-Amino Acids: A new frontier in amino acid and protein research. Nova Science Publishers, pp. 299–315.Google Scholar
  12. 12.
    Warnke M, Armstrong D W (2006) D-amino acid determination in foods, beverages, and biological samples. In: Konno R, Brückner H, D’Aniello A, Fisher G, Fujii N, Homma H (eds), D-Amino Acids: A new frontier in amino acid and protein research. Nova Science Publishers, pp. 317–336.Google Scholar
  13. 13.
    Pollegioni L, Piubelli L, Sacchi S et al. (2007) Physiological functions of D-amino acid oxidase: from yeast to human. Cell Mol Life Sci 64, 1373–1394.PubMedCrossRefGoogle Scholar
  14. 14.
    Pollegioni L, Molla G, Sacchi S et al. (2008) Properties and application of microbial D-amino acid oxidase: current state and perspectives. Appl Microbiol Biotechnol 78, 1–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Sacchi S, Lorenzi S, Molla G et al. (2002) Engineering the substrate specificity of D-amino acid oxidase. J Biol Chem 30, 27510–27516.CrossRefGoogle Scholar
  16. 16.
    Sacchi S, Rosini E, Molla G et al. (2004) Modulating D-amino acid oxidase substrate specificity: production of an enzyme for analytical determination of all D-amino acids by directed evolution. Protein Eng Des Sel 17, 517–525.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosini E, Molla G, Rossetti C et al. (2008) A biosensor for all D-amino acids using evolved D-amino acid oxidase. J Biotechnol 135, 377–384.PubMedCrossRefGoogle Scholar
  18. 18.
    Sacchi S, Pollegioni L, Pilone MS, Rossetti C (1998) Determination of D-amino acids using a D-amino acid oxidase biosensor with spectrometric and potentiometric detection. Biotechnol Tech 12, 149–153.CrossRefGoogle Scholar
  19. 19.
    Fantinato S, Pollegioni L, Pilone S M (2001) Engineering, expression and purification of a His-tagged chimeric D-amino acid oxidase from Rhodotorula gracilis. Enz Microb Technol 29, 407–412.CrossRefGoogle Scholar
  20. 20.
    Pernot P, Mothet J P, Schuvailo O et al. (2008) Characterization of a yeast D-amino acid oxidase microbiosensor for D-serine detection in the central nervous system. Anal Chem 80, 1589–1597.PubMedCrossRefGoogle Scholar
  21. 21.
    Pollegioni L, Sacchi S (2010) Metabolism of the neuromodulator D-serine. Cell Mol Life Sci 67, 2387–2404.PubMedCrossRefGoogle Scholar
  22. 22.
    Gandolfi I, Palla G, Delprato L et al. (1992) D-amino acids in milk as related to heat treatments and bacterial activity. J Food Sci 57, 377–379.CrossRefGoogle Scholar
  23. 23.
    Chaplin M, Bucke C (1990) Enzyme Technology. Cambridge University Press.Google Scholar
  24. 24.
    Pilone MS, Pollegioni L, Butò S (1992) Stability and kinetic properties of immobilized Rhodotorula gracilis D-amino acid oxidase. Biotechnol Appl Biochem 16, 252–262.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Silvia Sacchi
    • 1
    • 2
    Email author
  • Elena Rosini
    • 1
    • 2
  • Laura Caldinelli
    • 1
    • 2
  • Loredano Pollegioni
    • 1
    • 2
  1. 1.Dipartimento di Biotecnologie e Scienze MolecolariUniversità degli Studi dell’InsubriaVareseItaly
  2. 2.“The Protein Factory”Politecnico di Milano and Università degli Studi dell’InsubriaVareseItaly

Personalised recommendations