Advertisement

Electrophysiological Analysis of the Modulation of NMDA-Receptors Function by d-Serine and Glycine in the Central Nervous System

  • Fabrice Turpin
  • Glenn Dallérac
  • Jean-Pierre MothetEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 794)

Abstract

The NMDA subtypes of glutamatergic receptors (NMDARs) are unusual in that their activation requires the binding of both glutamate and a co-agonist glycine or d-serine. Whereas glycine was first suggested to play such a role, it was later established that d-serine could serve as an endogenous co-agonist at different central synapses. We still do not know the exact nature of the endogenous co-agonist(s) of NMDARs and the function of the so-called glycine B site in many brain structures. We introduced few years ago the use of enzymes that specifically degrade either d-serine or glycine to decipher the influence of these amino acids on NMDA receptors function. The use of these enzymatic scavengers represents an invaluable technique for neurophysiologists investigating the neuromodulation of the glycine B site in the CNS. Here, we describe the proper way to manipulate these enzymes during electrophysiological recordings in acute brain slices and highlight the experimental tricks.

Key words

d-Serine Glycine NMDA receptors Co-agonist Synapse Neurons Astrocytes Recombinant oxidases Long term potentiation Glutamate 

Notes

Acknowledgments

This work was supported by ANR grant (ANR-09-MNPS-022-01) and SERVIER grant to JPM. The authors are grateful to their collaborators for their support and notably to Dr Silvia Sacchi and Prof. Loredano Pollegioni for graciously providing us with the enzymes.

References

  1. 1.
    Hashimoto A, Oka T (1997) Free D-aspartate and D-serine in the mammalian brain and periphery. Prog Neurobiol 52, 325–353.PubMedCrossRefGoogle Scholar
  2. 2.
    Martineau M, Baux G, Mothet J P (2006) d-Serine signalling in the brain: friend and foe. Trends in Neurosci. 29, 481–491.CrossRefGoogle Scholar
  3. 3.
    Wolosker H (2007) NMDA receptor regulation by d-serine: new findings and perspectives. Mol Neurobiol 36, 152–164.PubMedCrossRefGoogle Scholar
  4. 4.
    Mothet J P, Parent A T, Wolosker H et al. (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 97, 4926–4931.PubMedCrossRefGoogle Scholar
  5. 5.
    Yang, Y, Ge W, Chen Y et al. (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of d-serine. Proc Natl Acad Sci USA 100, 15194–15199.PubMedCrossRefGoogle Scholar
  6. 6.
    Panatier A, Theodosis D T, Mothet J P et al. (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125, 775–784.PubMedCrossRefGoogle Scholar
  7. 7.
    Stevens E R, Esguerra M, Kim P M et al. (2003) d-Serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci USA 100, 6789–6794.PubMedCrossRefGoogle Scholar
  8. 8.
    Basu A C, Tsai G E, Ma C L et al. (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14, 719–727.PubMedCrossRefGoogle Scholar
  9. 9.
    Mustafa A K, Ahmad A S, Zeynalov E et al. (2010) Serine racemase deletion protects against cerebral ischemia and excitotoxicity. J Neurosci 30, 1413–1416.PubMedCrossRefGoogle Scholar
  10. 10.
    Inoue R, Hashimoto K, Harai T, Mori H (2008) NMDA- and beta-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 28, 14486–14491.PubMedCrossRefGoogle Scholar
  11. 11.
    Mitchell J, Paul P, Chen H J et al. (2010). Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proc Natl Acad Sci USA 20, 7556–7561.CrossRefGoogle Scholar
  12. 12.
    Sacchi S, Bernasconi M, Martineau M et al. (2008) pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem 283, 22244–22256.PubMedCrossRefGoogle Scholar
  13. 13.
    Turpin F R, Potier B, Dulong J R et al. (2011) Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging 32, 1495–1504.Google Scholar
  14. 14.
    Molla G, Vegezzi C, Pilone M S, Pollegioni L (1998) Overexpression in Escherichia coli of a recombinant chimeric Rhodotorula gracilis D-amino acid oxidase. Protein Expr Purif 14, 289–294.PubMedCrossRefGoogle Scholar
  15. 15.
    Job V, Marcone G L, Pilone M S, Pollegioni L (2002) Glycine oxidase from Bacillus subtilis. Characterization of a new flavoprotein. J Biol Chem 277, 6985–6993.Google Scholar
  16. 16.
    Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, Compact 3rd Edition CD-Room. Academic Press, San Diego.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Fabrice Turpin
    • 1
  • Glenn Dallérac
    • 2
    • 3
  • Jean-Pierre Mothet
    • 1
    • 4
    Email author
  1. 1.NeuroCentre MagendieINSERM U862, and Université de BordeauxBordeauxFrance
  2. 2.NeuroCentre Magendie and Université de BordeauxBordeauxFrance
  3. 3.Centre National de la Recherche ScientifiqueUniversité de la MéditerranéeMarseilleFrance
  4. 4.Centre de Recherche en Neurobiologie et Neurophysiologie de MarseilleUniversité de la MéditerranéeMarseilleFrance

Personalised recommendations