Advertisement

Experimental Methods for Scanning Unnatural Amino Acid Mutagenesis

  • Jia Liu
  • T. Ashton CroppEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 794)

Abstract

Site-specific incorporation of unnatural amino acids into proteins in vivo relies on the genetic reassignment of nonsense or quadruplet codons. Here, we describe a general procedure for the random introduction of these codons into open reading frames resulting in protein libraries that are scanned with unnatural amino acid residues. These libraries can enable large-scale mutagenesis experiments aimed at understanding and improving protein function.

Key words

Scanning mutagenesis tRNA Mu transposon Codon Unnatural amino acids 

Notes

Acknowledgments

The authors thank the National Institutes of Health (GM084396) for financial support. We are also grateful to Prof. Stefan Lutz (Emory University) for the plasmid pInSALect and Prof. Peter G. Schultz for the plasmid pSUP.

References

  1. 1.
    Cropp T A, Schultz P G (2004) An expanding genetic code. Trends Genet 20, 625–630.PubMedCrossRefGoogle Scholar
  2. 2.
    Wu N et al. (2004) A genetically encoded photocaged amino acid. J Am Chem Soc 126, 14306–14307.PubMedCrossRefGoogle Scholar
  3. 3.
    Chin J W et al. (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 99, 11020–11024.PubMedCrossRefGoogle Scholar
  4. 4.
    Wang L et al. (2003) Addition of the keto functional group to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 100, 56–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Deiters A et al. (2004) Site-specific PEGylation of proteins containing unnatural amino acids. Bioorg Med Chem Lett 14, 5743–5745.PubMedCrossRefGoogle Scholar
  6. 6.
    Daggett K A, Layer M, Cropp T A (2009) A general method for scanning unnatural amino acid mutagenesis. ACS Chem Biol 4, 109–113.PubMedCrossRefGoogle Scholar
  7. 7.
    Baldwin A J et al. (2008) Expanded molecular diversity generation during directed evolution by trinucleotide exchange (TriNEx). Nucleic Acids Res 36, e77.PubMedCrossRefGoogle Scholar
  8. 8.
    Baldwin A J et al. (2009) Expanded chemical diversity sampling through whole protein evolution. Mol Biosyst 5, 764–766.PubMedCrossRefGoogle Scholar
  9. 9.
    Gerth M L, Patrick W M, Lutz S (2004) A ­second-generation system for unbiased reading frame selection. Protein Eng Des Sel 17, 595–602.PubMedCrossRefGoogle Scholar
  10. 10.
    Ryu Y, Schultz P G (2006) Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nat Methods 3, 263–265.PubMedCrossRefGoogle Scholar
  11. 11.
    Haapa S et al. (1999) An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res 27, 2777–2784.PubMedCrossRefGoogle Scholar
  12. 12.
    Patrick W M, Firth A E, Blackburn J M (2003) User-friendly algorithms for estimating ­completeness and diversity in randomized protein-encoding libraries. Protein Eng 16, 451–  457.PubMedCrossRefGoogle Scholar
  13. 13.
    Poussu E et al. (2004) Probing the alpha-complementing domain of E. coli beta-galactosidase with use of an insertional pentapeptide mutagenesis strategy based on Mu in vitro DNA transposition. Proteins 54, 681–  692.PubMedCrossRefGoogle Scholar
  14. 14.
    Young T S et al. (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395, 361–374.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA

Personalised recommendations