Skip to main content

Preparation of Unnatural Amino Acids with Ammonia-Lyases and 2,3-Aminomutases

  • Protocol
  • First Online:
Unnatural Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 794))

Abstract

Ammonia-lyases catalyze a wide range of processes leading to α,β-unsaturated compounds by elimination of ammonia. In this chapter, ammonia-lyases are reviewed with major emphasis on their synthetic applications in stereoselective preparation of unnatural amino acids. Besides the synthesis of various unnatural α-amino acids with the aid of phenylalanine ammonia-lyases (PALs) utilizing the 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) prosthetic groups, the biotransformations leading to various unnatural β-amino acids with phenylalanine 2,3-aminomutases using the same catalytic MIO prosthetic group are discussed. Cloning, production, purification, and biotransformation protocols for PAL are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahdi JG, and Kelly DR (2000) Chapter 2 − Lyases. In: Kelly DR (ed) Biotechnology, 2nd edn. VCH, Weinheim-New York, vol. VIIIb, pp. 41–171.

    Google Scholar 

  2. Poppe L, and Rétey J (2003) Properties and synthetic applications of ammonia-lyases. Curr Org Chem 7, 1297–1315.

    Article  CAS  Google Scholar 

  3. Hughes AB (ed) (2009) Amino acids, ­peptides and proteins in organic chemistry: Volume 1 - Origins and Synthesis of Amino Acids. Wiley-VCH, Weinheim-New York.

    Google Scholar 

  4. Viola RE (2000) l-Aspartase: new tricks from an old enzyme. Adv Enzymol Relat Areas Mol Biol 74, 295–341.

    PubMed  CAS  Google Scholar 

  5. Chibata, I., Tosa, T., and Sato, T. (1976) Production of l-aspartic acid by microbial cells entrapped in polyacrylamide gels. Methods Enzymol 44, 739–746.

    Article  PubMed  CAS  Google Scholar 

  6. Sato T, Tosa T (1993) Production of l-aspartic acid. Bioprocess Technol 16, 15–24.

    PubMed  CAS  Google Scholar 

  7. Wang LJ, Kong XD, Zhang HY et al. (2000) Enhancement of the activity of l-aspartase from Escherichia coli W by directed evolution. Biochem Biophys Res Commun 276, 346–349.

    Article  PubMed  CAS  Google Scholar 

  8. Asano Y, Kira I, and Yokozeki K (2005) Alteration of substrate specificity of aspartase by directed evolution. Biomol Eng 22, 95–101.

    Article  PubMed  CAS  Google Scholar 

  9. Akhtar M, Cohen MA, and Gani G (1987) Stereochemical course of the enzymic amination of chloro- and bromo acid by 3-methylaspartate ammonia-lyase. Tetrahedron Lett 28, 2413–2416.

    Article  CAS  Google Scholar 

  10. Akhtar M, Botting NP, Cohen MA et al. (1987) Enantiospecific synthesis of 3-substituted aspartic acids via enzymic amination of substituted fumaric acids.  Tetrahedron 43, 5899–5908.

    Article  CAS  Google Scholar 

  11. Archer CH, Thomas NR, and Gani D. (1993) Syntheses of (2S,3R)- and (2S,3R)(3-2H)-3-methylaspartic acid: slow substrates for a syn-elimination reaction catalysed by methylaspartase. Tetrahedron:Asymmetry 4, 1141–1152.

    Article  CAS  Google Scholar 

  12. Gulzar MS, Akhtar M, and Gani D (1997) Preparation of N-substituted aspartic acids via enantiospecific conjugate addition of N-nucleophiles to fumaric acids using methylaspartase: synthetic utility and mechanistic implications. J Chem Soc Perkin Trans I 649–655.

    Google Scholar 

  13. Klee CB (1972) Metal activation of histidine ammonia-lyase. Metal ion-sulfhydryl group relationship. J Biol Chem 247, 1398–1406.

    CAS  Google Scholar 

  14. Seff AL, Pilbák S, Silaghi-Dumitrescu I et al. (2011) Computational investigation of the histidine ammonia-lyase reaction: a modified loop conformation and the role of the zinc(II) ion. J Mol Mod 17, 1551–1563.

    Google Scholar 

  15. Klee CB, Kirk KL, Cohen LA et al. (1975) Histidine ammonia-lyase. The use of 4-fluorohistidine in identification of the rate determining step. J Biol Chem 250, 5033–5040.

    PubMed  CAS  Google Scholar 

  16. Klee CB, Kirk KL, and Cohen LA (1979) 4-Nitro-l-histidine as a substrate for histidine ammonia-lyase: the role of β-hydrogen acidity in the rate-limiting step. Biochem Biophys Res Commun 87, 343–348.

    Article  PubMed  CAS  Google Scholar 

  17. Langer M, Pauling A, and Rétey J (1995) The role of dehydroalanine in catalysis by histidine ammonia-lyase. Angew Chem Int Ed 34, 1464–1465.

    Article  CAS  Google Scholar 

  18. Poppe L, and Rétey J (2005) Friedel-Crafts type mechanism for the enzymatic elimination of ammonia from histidine and phenylalanine. Angew Chem Int Ed 44, 3668–3688.

    Article  CAS  Google Scholar 

  19. Schwede TF, Rétey J, and Schulz GE (1999) Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. Biochemistry 38, 5355–5361

    Article  PubMed  CAS  Google Scholar 

  20. Calabrese JC, Jordan DB, Boodhoo A et al. (2004) Crystal structure of phenylalanine ammonia-lyase: multiple helix dipoles, implicated in catalysis. Biochemistry 43, 11403–11416.

    Article  PubMed  CAS  Google Scholar 

  21. Ritter H, and Schulz GE (2004) Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16, 3426–3436.

    Article  PubMed  CAS  Google Scholar 

  22. Louie GV, Bowman ME, Moffitt MC et al. (2006) Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Chem Biol 13, 1327–1338.

    Article  PubMed  CAS  Google Scholar 

  23. Poppe L (2001) Methylidene-imidazolone: a novel electrophile for substrate activation. Curr Opin Chem Biol 5, 512–524.

    Article  PubMed  CAS  Google Scholar 

  24. Rétey J (2003) Discovery and role of methylidene imidazolone, a highly electrophilic prosthetic group. Biochim Biophys Acta Proteins Proteomics 1647, 179–184.

    Article  Google Scholar 

  25. Kyndt JA, Meyer TE, Cusanovich MA et al. (2002) Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett 512, 240–244.

    Article  PubMed  CAS  Google Scholar 

  26. Berner M, Krug D, Bihlmaier C et al. (2006) Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J Bacteriol 188, 2666–2673.

    Article  PubMed  CAS  Google Scholar 

  27. Watts KT, Mijts BN, Lee PC et al. (2006) Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chem Biol 13, 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  28. Xue Z, McCluskey M, Cantera K et al. (2007) Improved production of p-hydroxycinnamic acid from tyrosine using a novel thermostable phenylalanine/tyrosine ammonia lyase enzyme. Enzyme Microb Technol 42, 58–64.

    Article  CAS  Google Scholar 

  29. Schroeder AC, Kumaran S, Hicks LM et al. (2008) Contributions of conserved serine and tyrosine residues to catalysis, ligand binding, and cofactor processing in the active site of tyrosine ammonia lyase. Phytochemistry 69, 1496–1506.

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka H, Oudou T, and Uchida K (1988) Production of fluorine-containing phenylalanine derivative from fluorine-containing cinnamic acid. Jap Pat 63148992.

    Google Scholar 

  31. Renard G, Guilleux JC, Bore C et al. (1992) Synthesis of l-phenylalanine analogs by Rhodotorula glutinis. Bioconversion of cinnamic acids derivatives. Biotechnol Lett 14, 673–678.

    CAS  Google Scholar 

  32. Zhao JS, and Yang SK (1995) Red yeast catalyzed amination of olefinic bonds and synthesis of optically pure S-amino acids. Chin J Chem 13, 241–245.

    Article  CAS  Google Scholar 

  33. Zhao JS, and Yang SK (1997) A new asymmetric synthesis of l-alpha-amino acid via microbial transformation. Acta Chim Sinica 55, 196–201.

    CAS  Google Scholar 

  34. Liu W (1999) Synthesis of optically active phenylalanine analogs using Rhodotorula graminis. US Pat 5981239

    Google Scholar 

  35. Gloge A, Langer B, Poppe L et al. (1998) The Behavior of substrate analogues and secondary deuterium isotope effects in the phenylalanine ammonia-lyase reaction. Arch Biochem Biophys 359, 1–7.

    Article  PubMed  CAS  Google Scholar 

  36. Gloge A, Zoń J, Kővári Á et al. (2000) Phenylalanine ammonia-lyase: the use of its broad substrate specificity for mechanistic investigations and biocatalysis. Synthesis of l-arylalanines. Chem Eur J 6, 3386–3390.

    CAS  Google Scholar 

  37. Paizs C, Katona A, and Rétey J (2006) The interaction of heteroaryl-acrylates and alanines with phenylalanine ammonia-lyase from Parsley. Chem Eur J 12, 2739–2744.

    Article  CAS  Google Scholar 

  38. Paizs C, Katona A, and Rétey J (2006) Chemoenzymatic one-pot synthesis of enantiopure l-arylalanines from arylaldehydes. Eur J Org Chem 1113–1116.

    Google Scholar 

  39. Paizs C, Toşa MI, Bencze LC et al. (2010) 2-Amino-3-(5-phenylfuran-2-yl) proprionic acids–phenylfuran-2-yl acrylic acids are novel substrates of phenylalanine ammonia lyase. Heterocycles doi:10.3987/COM-10S(E)60.

  40. Walker KD, Klettke K, Akiyama T et al. (2004) Cloning, heterologous expression, and characterization of a phenylalanie aminomutase involved in taxol biosynthesis. J Biol Chem 279, 53947–53954.

    Article  PubMed  CAS  Google Scholar 

  41. Steele CL, Chen Y, Dougherty BA et al. (2005) Purification, cloning, and functional expression of phenylalanine aminomutase: the first committed step in taxol side-chain biosynthesis. Arch Biochem Biophys 438, 1–10.

    Article  PubMed  CAS  Google Scholar 

  42. Mutatu W, Klettke KL, Foster C et al. (2007) Unusual mechanism for an aminomutase rearrangement: Retention of configuration at the migration termini. Biochemistry 46, 9785–9794.

    Article  PubMed  CAS  Google Scholar 

  43. Wu B, Szymański W, Wijma HJ et al. (2010) Engineering of an enantioselective tyrosine aminomutase by mutation of a single active site residue in phenylalanine aminomutase. Chem Commun 46, 8157–8159.

    Article  CAS  Google Scholar 

  44. Christenson SD, Liu W, Toney MD et al. (2003) A novel 4-methylideneimidazole-5-one-containing tyrosine aminomutase in ­enediyne antitumor antibiotic C-1027 biosynthesis. J Am Chem Soc 125, 6062–6063.

    Article  PubMed  CAS  Google Scholar 

  45. Christianson CV, Montavon TJ, Van Lanen SG et al. (2007) The structure of l-tyrosine 2,3-aminomutase from the C-1027 enediyne antitumor antibiotic biosynthetic pathway. Biochemistry 46, 7205–7214.

    Article  PubMed  CAS  Google Scholar 

  46. Walker KD, Klettke KL, Akiyama T et al. (2004) Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in taxol biosynthesis. J Biol Chem 279, 53947–53954.

    Article  PubMed  CAS  Google Scholar 

  47. Christenson SD, Wu W, Spies MA et al. (2003) Kinetic analysis of the 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis. Biochemistry 42, 12708–12718.

    Article  PubMed  CAS  Google Scholar 

  48. Rachid S, Krug D, Weissman KJ et al. (2007) Biosynthesis of (R)-β-tyrosine and its incorporation into the highly cytotoxic chondramides produced by Chondromyces crocatus. J Biol Chem 282, 21810–21817.

    Article  PubMed  CAS  Google Scholar 

  49. Krug D, and Müller R (2009) Discovery of additional members of the tyrosine aminomutase enzyme family and the mutational analysis of CmdF. ChemBioChem 10, 741–750.

    Article  PubMed  CAS  Google Scholar 

  50. Klettke KL, Sanyal S, Mutatu W et al. (2007) β-Styryl- and β-aryl-β-alanine products of phenylalanine aminomutase catalysis. J Am Chem Soc 129, 6988–6989.

    Article  PubMed  CAS  Google Scholar 

  51. Wu B, Szymański W, Wietzes P et al. (2009) Enzymatic synthesis of enantiopure α- and β-amino acids by phenylalanine aminomutase-catalysed amination of cinnamic acid derivatives. ChemBioChem 10, 338–344.

    Article  PubMed  CAS  Google Scholar 

  52. Wu B, Szymański W, Wildeman S et al. (2010) Efficient tandem biocatalytic process for the kinetic resolution of aromatic β-amino Acids. Adv Synth Catal 352, 1409–1412.

    Article  CAS  Google Scholar 

  53. Eckhart L, Schmidt M, Mildner M et al. (2008) Histidase expression in human epidermal keratinocytes: Regulation by differentiation status and all-trans retinoic acid. J Dermatol Sci 50, 209–215.

    Article  PubMed  CAS  Google Scholar 

  54. Gámez A, and Sarkissian CN (2005) Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Mol Genet Metabol 86(Suppl 1), 22–26.

    Google Scholar 

  55. Wang L, Gámez A, Archer H et al. (2008) Structural and biochemical characterization of the therapeutic Anabaena variabilis phenylalanine ammonia lyase. J Mol Biol 380, 623–635.

    Article  PubMed  CAS  Google Scholar 

  56. Sambrook J, and Russell DW (2006) The condensed protocols from − Molecular cloning: a laboratory manual; Cold Spring Harbor Laboratory Press, New York, s.58., protocol 1.25.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Hungarian National Office for Research and Technology (NKFP-07-A2 FLOWREAC), by the Hungarian National Science Foundation (OTKA, K68229, and CK78646), and by Howard Hughes Medical Institutes #55000342. This work is also related to the scientific program of “Development of quality-oriented and harmonized R+D+I strategy and functional model at BME” project (TÁMOP-4.2.1/B-09/1/KMR-2010-0002), supported by the New Hungary Plan. The financial support to Csaba Paizs from the Romanian Ministry of Education and Research (CNCSIS No. 527/2461) is gratefully acknowledged. We thank János Rétey (Institute of Organic Chemistry, Karlsruhe Institute of Technology, Germany), G. E. Schulz, and M. Baedeker (University of Freiburg, Germany) for providing us the Petroselinum crispum PAL expression system, András Holczinger (Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary) for providing us the gene of Photorhabdus luminescens PAL in pBAD-24 vector, and also M. Stieger (Hoffmann-La Roche, Basel, Switzerland) for vector pREP4-GroESL carrying the HSP-60 system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Poppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Poppe, L., Paizs, C., Kovács, K., Irimie, FD., Vértessy, B. (2012). Preparation of Unnatural Amino Acids with Ammonia-Lyases and 2,3-Aminomutases. In: Pollegioni, L., Servi, S. (eds) Unnatural Amino Acids. Methods in Molecular Biology, vol 794. Humana Press. https://doi.org/10.1007/978-1-61779-331-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-331-8_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-330-1

  • Online ISBN: 978-1-61779-331-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics