Skip to main content

Surface Trafficking of Sodium Channels in Cells and in Hippocampal Slices

  • Protocol
  • First Online:
Neurodegeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 793))

Abstract

The voltage-gated sodium channel (Nav1) plays an important role in initiating and propagating action potentials in neuronal cells. We and others have recently found that the Alzheimer’s disease-related secretases BACE1 and presenilin (PS)/γ-secretase regulate Nav1 function by cleaving auxiliary subunits of the channel complex. We have also shown that elevated BACE1 activity significantly decreases sodium current densities in neuroblastoma cells and acutely dissociated adult hippocampal neurons. For detailed molecular studies of sodium channel regulation, biochemical methods are now complementing classical electrophysiology. To understand how BACE1 regulates sodium current densities in our studies, we setup conditions to analyze surface levels of the pore-forming Nav1 α-subunits. By using a cell surface biotinylation protocol, we found that elevated BACE1 activity significantly decreases surface Nav1 α-subunit levels in both neuroblastoma cells and acutely prepared hippocampal slices. This finding would explain the decreased sodium currents shown by standard electrophysiological methods. The biochemical methods used in our studies would be applicable to analyses of surface expression levels of other ion channels as well as Nav1 in cells and adult hippocampal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lai, H., and Jan, L. (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci. 7, 548–562.

    Article  PubMed  CAS  Google Scholar 

  2. Catterall, W. (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 26, 13–25.

    Article  PubMed  CAS  Google Scholar 

  3. Isom, L., De Jongh, K., and Catterall, W. (1994) Auxiliary subunits of voltage-gated ion channels. Neuron. 12, 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  4. Isom, L., and Catterall, W. (1996) Na+ channel subunits and Ig domains. Nature. 383, 307–308.

    Article  PubMed  CAS  Google Scholar 

  5. Brackenbury, W. J., Djamgoz, M. B. A., and Isom, L. L. (2008) An emerging role for ­voltage-gated Na+ channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist. 14, 571–583.

    Article  PubMed  CAS  Google Scholar 

  6. Schmidt, J., and Catterall, W. (1986) Biosynthesis and processing of the alpha subunit of the voltage-sensitive sodium channel in rat brain neurons. Cell. 46, 437–444.

    Article  PubMed  CAS  Google Scholar 

  7. Isom, L. (2001) Sodium channel beta subunits: anything but auxiliary. Neuroscientist. 7, 42–54.

    Article  PubMed  CAS  Google Scholar 

  8. Catterall, W. (2002) Molecular mechanisms of gating and drug block of sodium channels. Novartis Found Symp. 241, 206–218; discussion 218–232.

    Google Scholar 

  9. Isom, L., Ragsdale, D., De Jongh, K., Westenbroek, R., Reber, B., Scheuer, T., and Catterall, W. (1995) Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell. 83, 433–442.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, C., Bharucha, V., Chen, Y., Westenbroek, R., Brown, A., Malhotra, J., Jones, D., Avery, C., Gillespie, P., Kazen-Gillespie, K., Kazarinova-Noyes, K., Shrager, P., Saunders, T., Macdonald, R., Ransom, B., Scheuer, T., Catterall, W., and Isom, L. (2002) Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel beta 2-subunits. Proc Natl Acad Sci USA. 99, 17072–17077.

    Article  PubMed  CAS  Google Scholar 

  11. Lopez-Santiago, L., Pertin, M., Morisod, X., Chen, C., Hong, S., Wiley, J., Decosterd, I., and Isom, L. (2006) Sodium channel beta2 subunits regulate tetrodotoxin-sensitive sodium channels in small dorsal root ganglion neurons and modulate the response to pain. J Neurosci. 26, 7984–7994.

    Article  PubMed  CAS  Google Scholar 

  12. Schmidt, J., Rossie, S., and Catterall, W. (1985) A large intracellular pool of inactive Na channel alpha subunits in developing rat brain. Proc Natl Acad Sci USA. 82, 4847–4851.

    Article  PubMed  CAS  Google Scholar 

  13. Wong, H., Sakurai, T., Oyama, F., Kaneko, K., Wada, K., Miyazaki, H., Kurosawa, M., De Strooper, B., Saftig, P., and Nukina, N. (2005) {beta} Subunits of Voltage-gated Sodium Channels Are Novel Substrates of {beta}-Site Amyloid Precursor Protein-cleaving Enzyme (BACE1) and {gamma}-Secretase. J Biol Chem. 280, 23009–23017.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, D., Ingano, L., Carey, B., Pettingell, W., and Kovacs, D. (2005) Presenilin/{gamma}-Secretase-mediated Cleavage of the Voltage-gated Sodium Channel {beta}2-Subunit Regulates Cell Adhesion and Migration. J Biol Chem. 280, 23251–23261.

    Article  PubMed  CAS  Google Scholar 

  15. Kim, D., Carey, B., Wang, H., Ingano, L., Binshtok, A., Wertz, M., Pettingell, W., He, P., Lee, V., Woolf, C., and Kovacs, D. (2007) BACE1 regulates voltage-gated sodium ­channels and neuronal activity. Nat Cell Biol. 9, 755–764.

    Article  PubMed  CAS  Google Scholar 

  16. Vassar, R., Kovacs, D. M., Yan, R., and Wong, P. C. (2009) The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J Neurosci. 29, 12787–12794.

    Article  PubMed  CAS  Google Scholar 

  17. Fukumoto, H., Cheung, B., Hyman, B., and Irizarry, M. (2002) beta-Secretase Protein and Activity Are Increased in the Neocortex in Alzheimer Disease. Arch Neurol. 59, 1381–1389.

    Article  PubMed  Google Scholar 

  18. Tyler, S., Dawbarn, D., Wilcock, G., and Allen, S. (2002) alpha- and beta-secretase: profound changes in Alzheimer’s disease. Biochem Biophys Res Commun. 299, 373–376.

    Article  PubMed  CAS  Google Scholar 

  19. Yang, L., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X., Beach, T., Sue, L., Wong, P., Price, D., Li, R., and Shen, Y. (2003) Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med. 9, 3–4.

    Article  PubMed  CAS  Google Scholar 

  20. Li, R., Lindholm, K., Yang, L., Yue, X., Citron, M., Yan, R., Beach, T., Sue, L., Sabbagh, M., Cai, H., Wong, P., Price, D., and Shen, Y. (2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci USA. 101, 3632–3637.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao, J., Fu, Y., Yasvoina, M., Shao, P., Hitt, B., O’Connor, T., Logan, S., Maus, E., Citron, M., Berry, R., Binder, L., and Vassar, R. (2007) Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J Neurosci. 27, 3639–3649.

    Article  PubMed  CAS  Google Scholar 

  22. Thomas-Crusells, J., Vieira, A., Saarma, M., and Rivera, C. (2003) A novel method for monitoring surface membrane trafficking on hippocampal acute slice preparation. J Neurosci Methods. 125, 159–166.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Manuel T. Gersbacher and Ms. Ateka Ahmed for their technical help. This work is supported by grants from the Cure Alzheimer’s Fund and the NIH/NIA to DMK and DYK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Yeon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kim, D.Y., Kovacs, D.M. (2011). Surface Trafficking of Sodium Channels in Cells and in Hippocampal Slices. In: Manfredi, G., Kawamata, H. (eds) Neurodegeneration. Methods in Molecular Biology, vol 793. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-328-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-328-8_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-327-1

  • Online ISBN: 978-1-61779-328-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics