Skip to main content

Monitoring Mitophagy in Neuronal Cell Cultures

  • Protocol
  • First Online:
Neurodegeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 793))

Abstract

Proper control of mitochondrial turnover is critical for maintenance of cellular energetics under basal and stressed conditions, and for prevention of endogenous oxidative stress. Whole organelle turnover is mediated through macroautophagy, a process by which autophagosomes deliver mitochondria to the lysosome for hydrolytic degradation. While mitochondrial autophagy can occur as part of a nonselective upregulation of autophagy, selective degradation of damaged or unneeded mitochondria (mitophagy) is a rapidly growing area in development, cancer, and neurodegeneration, particularly with regard to Parkinson’s disease. Due to its dynamic nature, and the potential for regulatory perturbation by disease processes, no single technique is sufficient to evaluate mitophagy. Here, we describe several complementary techniques that include electron microscopy, single cell analysis of LC3 fluorescent puncta, and Western blot, each used in conjunction with a flux inhibitor to trap newly formed autophagosomes in order to monitor mitophagy in neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bueler, H., (2010) Mitochondrial dynamics, cell death and the pathogenesis of Parkinson’s disease. Apoptosis 15: 1336–1353.

    Google Scholar 

  2. Chu, C. T., J. H. Zhu, G. Cao, A. Signore, S. Wang & J. Chen, (2005) Apoptosis inducing factor mediates caspase-independent 1-methyl-4-phenylpyridinium toxicity in dopaminergic cells. Journal of neurochemistry 94: 1685–1695.

    Google Scholar 

  3. Jennings, J. J., Jr., J. H. Zhu, Y. Rbaibi, X. Luo, C. T. Chu & K. Kiselyov, (2006) Mitochondrial aberrations in mucolipidosis Type IV. The Journal of biological chemistry 281: 39041–39050.

    Google Scholar 

  4. Gomez-Lazaro, M., N. A. Bonekamp, M. F. Galindo, J. Jordan & M. Schrader, (2008) 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. Free radical biology & medicine 44: 1960–1969.

    Google Scholar 

  5. Suen, D. F., D. P. Narendra, A. Tanaka, G. Manfredi & R. J. Youle, Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proceedings of the National Academy of Sciences of the United States of America 107: 11835–11840.

    Google Scholar 

  6. Dagda, R. K., S. J. Cherra, 3rd, S. M. Kulich, A. Tandon, D. Park & C. T. Chu, (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. The Journal of biological chemistry 284: 13843–13855.

    Google Scholar 

  7. Tolkovsky, A. M., L. Xue, G. C. Fletcher & V. Borutaite, (2002) Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie 84: 233–240.

    Google Scholar 

  8. Chu, C. T., (2010) A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Human molecular genetics 19: R28-37.

    Google Scholar 

  9. Knott, A. B. & E. Bossy-Wetzel, (2008) Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Annals of the New York Academy of Sciences 1147: 283–292.

    Google Scholar 

  10. Chen, H. & D. C. Chan, (2009) Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Human molecular genetics 18: R169-176.

    Google Scholar 

  11. Weber, T. A. & A. S. Reichert, (2010) Impaired quality control of mitochondria: aging from a new perspective. Experimental gerontology 45: 503–511.

    Google Scholar 

  12. Narendra, D., A. Tanaka, D. F. Suen & R. J. Youle, (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of cell biology 183: 795–803.

    Google Scholar 

  13. Narendra, D. P., S. M. Jin, A. Tanaka, D. F. Suen, C. A. Gautier, J. Shen, M. R. Cookson & R. J. Youle, (2010) PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin. PLoS biology 8: e1000298.

    Google Scholar 

  14. Ziviani, E., R. N. Tao & A. J. Whitworth, (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proceedings of the National Academy of Sciences of the United States of America 107: 5018–5023.

    Google Scholar 

  15. Kawajiri, S., S. Saiki, S. Sato, F. Sato, T. Hatano, H. Eguchi & N. Hattori, (2010) PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS letters 584: 1073–1079.

    Google Scholar 

  16. Novak, I., V. Kirkin, D. G. McEwan, J. Zhang, P. Wild, A. Rozenknop, V. Rogov, F. Lohr, D. Popovic, A. Occhipinti, A. S. Reichert, J. Terzic, V. Dotsch, P. A. Ney & I. Dikic, (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO reports 11: 45–51.

    Google Scholar 

  17. Kanki, T., K. Wang, Y. Cao, M. Baba & D. J. Klionsky, (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Developmental cell 17: 98–109.

    Google Scholar 

  18. Tal, R., G. Winter, N. Ecker, D. J. Klionsky & H. Abeliovich, (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. The Journal of biological chemistry 282: 5617–5624.

    Google Scholar 

  19. Kissova, I., M. Deffieu, S. Manon & N. Camougrand, (2004) Uth1p is involved in the autophagic degradation of mitochondria. The Journal of biological chemistry 279: 39068–39074.

    Google Scholar 

  20. Zhu, J. H., C. Horbinski, F. Guo, S. Watkins, Y. Uchiyama & C. T. Chu, (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. The American journal of pathology 170: 75–86.

    Google Scholar 

  21. Twig, G., A. Elorza, A. J. Molina, H. Mohamed, J. D. Wikstrom, G. Walzer, L. Stiles, S. E. Haigh, S. Katz, G. Las, J. Alroy, M. Wu, B. F. Py, J. Yuan, J. T. Deeney, B. E. Corkey & O. S. Shirihai, (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO journal 27: 433–446.

    Google Scholar 

  22. Kundu, M., T. Lindsten, C. Y. Yang, J. Wu, F. Zhao, J. Zhang, M. A. Selak, P. A. Ney & C. B. Thompson, (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112: 1493–1502.

    Google Scholar 

  23. Chu, C. T., J. Zhu & R. Dagda, (2007) Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy 3: 663–666.

    Google Scholar 

  24. Zhang, J., M. S. Randall, M. R. Loyd, F. C. Dorsey, M. Kundu, J. L. Cleveland & P. A. Ney, (2009) Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 114: 157–164.

    Google Scholar 

  25. Wright, G., K. Terada, M. Yano, I. Sergeev & M. Mori, (2001) Oxidative stress inhibits the mitochondrial import of preproteins and leads to their degradation. Experimental cell research 263: 107–117.

    Google Scholar 

  26. Kimura, S., T. Noda & T. Yoshimori, (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3: 452–460.

    Google Scholar 

  27. Chu, C. T., E. D. Plowey, R. K. Dagda, R. W. Hickey, S. J. Cherra, 3rd & R. S. Clark, (2009) Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models. Methods in enzymology 453: 217–249.

    Google Scholar 

  28. Cherra, S. J., S.M. Kulich, G. Uechi, M. Balasubramani, J. Mountzouris, B.W. Day & C.T. Chu, (2010) Regulation of the autophagy protein LC3 by phosphorylation. J. Cell. Biol. 190: 533–539.

    Google Scholar 

  29. Dagda, R. K., J. Zhu, S. M. Kulich & C. T. Chu, (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy 4: 770–782.

    Google Scholar 

  30. Klionsky, D. J., H. Abeliovich, P. Agostinis, D. K. Agrawal, G. Aliev, D. S. Askew, M. Baba, E. H. Baehrecke, B. A. Bahr, A. Ballabio, B. A. Bamber, D. C. Bassham, E. Bergamini, X. Bi, M. Biard-Piechaczyk, J. S. Blum, D. E. Bredesen, J. L. Brodsky, J. H. Brumell, U. T. Brunk, W. Bursch, N. Camougrand, E. Cebollero, F. Cecconi, Y. Chen, L. S. Chin, A. Choi, C. T. Chu, J. Chung, P. G. Clarke, R. S. Clark, S. G. Clarke, C. Clave, J. L. Cleveland, P. Codogno, M. I. Colombo, A. Coto-Montes, J. M. Cregg, A. M. Cuervo, J. Debnath, F. Demarchi, P. B. Dennis, P. A. Dennis, V. Deretic, R. J. Devenish, F. Di Sano, J. F. Dice, M. Difiglia, S. Dinesh-Kumar, C. W. Distelhorst, M. Djavaheri-Mergny, F. C. Dorsey, W. Droge, M. Dron, W. A. Dunn, Jr., M. Duszenko, N. T. Eissa, Z. Elazar, A. Esclatine, E. L. Eskelinen, L. Fesus, K. D. Finley, J. M. Fuentes, J. Fueyo, K. Fujisaki, B. Galliot, F. B. Gao, D. A. Gewirtz, S. B. Gibson, A. Gohla, A. L. Goldberg, R. Gonzalez, C. Gonzalez-Estevez, S. Gorski, R. A. Gottlieb, D. Haussinger, Y. W. He, K. Heidenreich, J. A. Hill, M. Hoyer-Hansen, X. Hu, W. P. Huang, A. Iwasaki, M. Jaattela, W. T. Jackson, X. Jiang, S. Jin, T. Johansen, J. U. Jung, M. Kadowaki, C. Kang, A. Kelekar, D. H. Kessel, J. A. Kiel, H. P. Kim, A. Kimchi, T. J. Kinsella, K. Kiselyov, K. Kitamoto, E. Knecht, et al., (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151–175.

    Google Scholar 

  31. Plowey, E. D., S. J. Cherra, 3rd, Y. J. Liu & C. T. Chu, (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. Journal of neurochemistry 105: 1048–1056.

    Google Scholar 

  32. Shacka, J. J., B. J. Klocke, M. Shibata, Y. Uchiyama, G. Datta, R. E. Schmidt & K. A. Roth, (2006) Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons. Molecular pharmacology 69: 1125–1136.

    Google Scholar 

  33. Tolkovsky, A. M., (2009) Mitophagy. Biochimica et biophysica acta 1793: 1508–1515.

    Google Scholar 

  34. Buckman, J. F., H. Hernandez, G. J. Kress, T. V. Votyakova, S. Pal & I. J. Reynolds, (2001) MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. Journal of neuroscience methods 104: 165–176.

    Google Scholar 

  35. Lang-Rollin, I. C., H. J. Rideout, M. Noticewala & L. Stefanis, (2003) Mechanisms of caspase-independent neuronal death: energy depletion and free radical generation. J Neurosci 23: 11015–11025.

    Google Scholar 

  36. Rantanen, A., M. Jansson, A. Oldfors & N. G. Larsson, (2001) Downregulation of Tfam and mtDNA copy number during mammalian spermatogenesis. Mamm Genome 12: 787–792.

    Google Scholar 

  37. Fisher, R. P., J. N. Topper & D. A. Clayton, (1987) Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell 50: 247–258.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health (AG026389, NS065789). CTC is recipient of an AFAR/Ellison Medical Foundation Julie Martin Mid-Career Award in Aging Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charleen T. Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhu, J., Dagda, R.K., Chu, C.T. (2011). Monitoring Mitophagy in Neuronal Cell Cultures. In: Manfredi, G., Kawamata, H. (eds) Neurodegeneration. Methods in Molecular Biology, vol 793. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-328-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-328-8_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-327-1

  • Online ISBN: 978-1-61779-328-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics