Skip to main content

ELISPOT Assays to Enumerate Bovine IFN-γ-Secreting Cells for the Development of Novel Vaccines Against Bovine Tuberculosis

  • Protocol
  • First Online:
Handbook of ELISPOT

Part of the book series: Methods in Molecular Biology ((MIMB,volume 792))

Abstract

Enumeration of antigen-specific cells after vaccination is one of the prime immunological parameters determined when developing vaccines. Due to their exquisite sensitivity (limits of detection can be below 1/100,000 cells), ELISPOT assays are therefore an important tool in vaccine development programs. This is particularly the case for vaccines against diseases that require protective cell-mediated immunity, such as tuberculosis. This chapter describes ELISPOT assays detecting bovine IFN-γ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vordermeier, H.M., Chambers, M.A., Buddle, B.M., Pollock, J.M. and Hewinson, R.G. (2006) Progress in the development of vaccines and diagnostic reagents to control tuberculosis in cattle. Vet J 171, 229–244.

    Article  PubMed  CAS  Google Scholar 

  2. Vordermeier, H.M., Chambers, M.A., Cockle, P.J., Whelan, A.O., Simmons, J., and Hewinson, R.G. (2002) Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis. Infect Immun 70, 3026–3032.

    Article  PubMed  CAS  Google Scholar 

  3. Vordermeier, H.M., Rhodes, S.G., Dean, G., Goonetilleke, N., Huygen, K., Hill, A.V., et al. (2004) Cellular immune responses induced in cattle by heterologous prime-boost vaccination using recombinant viruses and bacille Calmette-Guerin. Immunology 112, 461–470.

    Article  PubMed  CAS  Google Scholar 

  4. Vordermeier H.M., Pontarollo R., Karvonen B., Cockle P., Hecker R., Singh, M., et al. (2005) Synthetic peptide vaccination in cattle: induction of strong cellular immune responses against peptides derived from the Mycobacterium bovis antigen Rv3019c. Vaccine 23, 4375–4384.

    Article  PubMed  CAS  Google Scholar 

  5. Keating S.M., Bejon P., Berthoud T., Vuola J.M., Todryk S., Webster, D.P., et al. (2005) Durable human memory T cells quantifiable by cultured enzyme-linked immunospot assays are induced by heterologous prime boost immunization and correlate with protection against malaria. J Immunol 175, 5675–5680.

    PubMed  CAS  Google Scholar 

  6. Todryk S.M., Bejon P., Mwangi T., Plebanski M., Urban B., Marsh, K., et al. (2008) Correlation of memory T cell responses against TRAP with protection from clinical malaria, and CD4 CD25 high T cells with susceptibility in Kenyans. PLoS ONE 3, e2027.

    Article  PubMed  Google Scholar 

  7. Godkin, A.J., Thomas, H.C. and Openshaw, P.J. (2002) Evolution of epitope-specific memory CD4(+) T cells after clearance of hepatitis C virus. J Immunol 169, 2210–2214.

    PubMed  CAS  Google Scholar 

  8. Vordermeier H.M., Dean G.S., Rosenkrands I., Agger E.M., Andersen P., Kaveh, D.A., et al. (2009) Adjuvants induce distinct immunological phenotypes in a bovine tuberculosis vaccine model. Clin Vaccine Immunol 16, 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  9. Vordermeier, H.M., Huygen, K., Singh, M., Hewinson, R.G. and Xing, Z. (2006) Immune responses induced in cattle by vaccination with a recombinant adenovirus expressing Mycobacterial antigen 85A and Mycobacterium bovis BCG. Infect Immun 74, 14161418.

    Article  PubMed  CAS  Google Scholar 

  10. Vordermeier H.M., Villarreal-Ramos B., Cockle P.J., McAulay M., Rhodes S.G., Thacker, T., et al. (2009) Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun 77, 3364–3373.

    Article  PubMed  CAS  Google Scholar 

  11. Waters W.R., Palmer M.V., Nonnecke B.J., Thacker T.C., Scherer C.F., Estes, D.M., et al. (2009) Efficacy and immunogenicity of Mycobacterium bovis DeltaRD1 against aerosol M. bovis infection in neonatal calves. Vaccine 27, 1201–1209.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by the Department for Environment, Food and Rural Affairs, the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vordermeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vordermeier, M., Whelan, A.O. (2012). ELISPOT Assays to Enumerate Bovine IFN-γ-Secreting Cells for the Development of Novel Vaccines Against Bovine Tuberculosis. In: Kalyuzhny, A. (eds) Handbook of ELISPOT. Methods in Molecular Biology, vol 792. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-325-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-325-7_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-324-0

  • Online ISBN: 978-1-61779-325-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics