Skip to main content

Q-PCR in Combination with ChIP Assays to Detect Changes in Chromatin Acetylation

  • Protocol
  • First Online:
Epigenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 791))

Abstract

Quantitative polymerase chain reaction (Q-PCR) allows for the accurate and reproducible determination of the amount of target DNA in a sample through the measurement of PCR product accumulation in “real time.” This method determines starting target DNA quantity over a large assay dynamic range and requires no post-PCR sample manipulation. When used in combination with the method of chromatin immunoprecipitation (ChIP), the amount of protein binding to a specific region of DNA can be accurately and rapidly determined. A method for quantifying the presence of acetylated histones H3 and H4 on different regions of a target locus using Q-PCR after ChIP is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Irvine, R. A., and Hsieh, C.-L. (2002) DNA methylation has a local effect on transcription and histone acetylation. Mol. Cell. Biol. 22, 6689–6696.

    Article  PubMed  CAS  Google Scholar 

  2. Okitsu, C. Y., and Hsieh, C.-L. (2007) DNA methylation dictates histone h3k4 methylation. Mol. Cell. Biol. 27, 2746–2757.

    Article  PubMed  CAS  Google Scholar 

  3. Okitsu, C. Y., Hsieh, J. C., and Hsieh, C.-L. (2010) Transcriptional activity affects the H3k4me3 level and distribution in the coding region. Mol. Cell. Biol. 30, 2933–2946.

    Google Scholar 

  4. Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde crosslinked- chromatin immunoprecipitation. Trends Biochem. Sci. 25, 99–104.

    Article  PubMed  CAS  Google Scholar 

  5. Ginzinger, D. G. (2002) Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp. Hematology 30, 503–512.

    Article  CAS  Google Scholar 

  6. Stevens, S. J., Verschuuren, E. A., Pronk, I., van Der Bij, W., Harmsen, M. C., The, T. H., Meijer, C. J., van Den Brule, A. J., and Middeldorp, J. M. (2001) Frequent monitoring of Epstein-Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood 97, 1165–1171.

    Google Scholar 

  7. Santos, J. H., Meyer, J. N., Mandavilli, B.S., and Van Houten, B. (2006) Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 314, 183–199.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, C. J., and Osborn, A. M. (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67, 6–20.

    Article  PubMed  CAS  Google Scholar 

  9. Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996) Real Time Quantitative PCR. Genome Res. 6, 986–994.

    CAS  Google Scholar 

  10. Solomon, M. J., Larsen, P. L., and Varshavsky, A. (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell. 53, 937–947.

    Article  PubMed  CAS  Google Scholar 

  11. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D., and Broach, J. R. (1993) Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604.

    Article  PubMed  CAS  Google Scholar 

  12. Hsieh, C.-L. (1994) Dependence of transcriptional repression on CpG methylation density. Mol. Cell. Biol. 14, 5487–5494.

    PubMed  CAS  Google Scholar 

  13. Chen, H., Lin, R. J., Xie, W., Wilpitz, D., and Evans, R. M. (1999) Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell. 98, 675–686.

    Article  PubMed  CAS  Google Scholar 

  14. Acevedo, L. G., Bieda, M., Green, R., and Farnham, P. J. (2008) Analysis of the mechanisms mediating tumor-specific changes in gene expression in human liver tumors. Cancer Res. 68, 2641–2651.

    Article  PubMed  CAS  Google Scholar 

  15. Haring, M., Offermann, S., Danker, T., Horst, I., Peterhansel, C., and Stam, M. (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3, 11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Lin Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Irvine, R.A., Okitsu, C., Hsieh, CL. (2011). Q-PCR in Combination with ChIP Assays to Detect Changes in Chromatin Acetylation. In: Tollefsbol, T. (eds) Epigenetics Protocols. Methods in Molecular Biology, vol 791. Humana Press. https://doi.org/10.1007/978-1-61779-316-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-316-5_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-315-8

  • Online ISBN: 978-1-61779-316-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics