Skip to main content

Combined Light and Electron Microscopic Visualization of Neuropeptides and Their Receptors in Central Neurons

  • Protocol
  • First Online:
Neuropeptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 789))

Abstract

The study of neuronal connections and neuron to neuron (or neuron to glia) communication is of fundamental importance in understanding brain structure and function. Therefore, ultrastructural investigation by the use of immunocytochemical techniques is a really precious tool to obtain an exact map of the localization of neurotransmitters (neuropeptides) and their receptors at different types of synapses. However, in immunocytochemical procedures one has always to search for the optimal compromise between structural preservation and retention of antigenicity. This is often made difficult by the need to localize not only small transmitter molecules, as in the case of transmitter amino acids and neuropeptides, but also their specific receptors that are usually large proteins very sensitive to fixation procedures.

We describe here a preembedding procedure employing the Fluoronanogold™ reagent, a probe consisting of fluorescein-tagged antibodies conjugated with ultrasmall gold particles that can be made visible under the electron microscope by a gold intensification procedure. This technique permits correlative fluorescence and electron microscopy observations, providing a very useful tool for the study of neuronal connectivity. Moreover, the Fluoronanogold™ procedure can be combined with conventional postembedding immunogold techniques in multiple labeling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faulk, W. P. and Taylor, G. M. (1971) An immunocolloid method for the electron microscope. Immunochemistry 8, 1081–1083.

    Article  PubMed  CAS  Google Scholar 

  2. Priestley, J.V. (1984) Pre-embedding ultrastructural immunocytochemistry: Immunoenzyme techniques, in Immunolabelling for electron Microscopy (Eds J.M. Polak and I.M. Varndell), pp. 37–52, Elsevier, Amsterdam.

    Google Scholar 

  3. Merighi, A. (1992) Post-embedding electron microscopic immunocytochemistry, p. 51–87. In J. M. Polak and J. V. Priestley (Eds.), Electron Microscopic Immunocytochemistry. Oxford University Press, London.

    Google Scholar 

  4. Merighi, A. and Polak, J. M. (1993) Post-embedding immunogold staining. p. 229–264. In A. Cuello (Ed.), Immunohistochemistry II. John Wiley & Sons, London.

    Google Scholar 

  5. Aimar, P., Lossi, L., and Merighi, A. (2002) Immunocytochemical labeling methods and related techniques for ultrastructural analysis on neuronal connectivity, p. 161–180. In A. Merighi and G. Carmignoto (Eds.), Cellular and Molecular Methods in Neuroscience Research. Springer-Verlag, New York.

    Google Scholar 

  6. Powell, R. D., Halsey, C. M., Spector, D. L., Kaurin, S. L., McCann, J. and Hainfeld, J. F. (1997) A covalent fluorescent-gold immunoprobe: simultaneous detection of a pre-mRNA splicing factor by light and electron microscopy. J. Histochem. Cytochem. 45, 947–956.

    Article  PubMed  CAS  Google Scholar 

  7. Robinson, J. M. and Vandré, D. D. (1997) Efficient Immunocytochemical Labeling of Leukocyte Microtubules with FluoroNanogold: An Important Tool for Correlative Microscopy. J. Histochem. Cytochem. 45, 631–642.

    Article  PubMed  CAS  Google Scholar 

  8. Takizawa, T. and Robinson, J. M. (2000) FluoroNanogold is a bifunctional immunoprobe for correlative fluorescence and electron microscopy. J. Histochem. Cytochem. 48, 481–486.

    Article  PubMed  CAS  Google Scholar 

  9. Robinson, J. M., Takizawa, T., Pombo, A. and Cook, P. R. (2001) Correlative fluorescence and electron microscopy on ultrathin cryosections: bridging the resolution gap. J. Histochem. Cytochem. 49, 803–808.

    Article  PubMed  CAS  Google Scholar 

  10. Takizawa, T. and Robinson, J. M. (2003) Ultrathin Cryosections: An Important Tool for Immunofluorescence and Correlative Microscopy. J. Histochem. Cytochem. 51, 707–714.

    Article  PubMed  CAS  Google Scholar 

  11. Proudlock, F., Spike, R. C. and Todd, A.J. (1993) Immunocytochemical study of somatostatin, neurotensin, GABA, and glycine in rat spinal dorsal horn. J. Comp. Neurol. 327, 289–297.

    Article  PubMed  CAS  Google Scholar 

  12. Jiang, N., Furue, H., Katafuchi, F., and Yoshimura, M. (2003) Somatostatin directly inhibits substantia gelatinosa neurons in adult rat spinal dorsal horn in vitro. Neuroscience Research 47, 97–107.

    Google Scholar 

  13. Holstege, J. C., Jongen, J. L., Kennis, J. H., van Rooven-Boot, A. A., and Vecht, C. J. (1998) Immunocytochemical localization of GDNF in primary afferents of the lumbar dorsal horn. Neuroreport 9, 2893–2897.

    Article  PubMed  CAS  Google Scholar 

  14. Jongen, J. L., Dalm, E., Vecht, C. J., and Holstege, J. C. (1999) Depletion of GDNF from primary afferents in adult dorsal horn following peripheral axotomy. Neuroreport 10, 867871.

    Article  PubMed  CAS  Google Scholar 

  15. Pezet, S., Malcangio, M., and McMahon, S.B. (2002) BDNF: a neuromodulator in nociceptive pathways? Brain Res. Brain Res. Rev. 40, 240–249.

    Article  PubMed  CAS  Google Scholar 

  16. Malcangio, M. and Lessmann, V. (2003) A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends Pharmacol. Sci. 24, 116–121.

    CAS  Google Scholar 

  17. Merighi, A., Carmignoto, G., Gobbo, S., Lossi, L., Salio, C., Vergnano, A.M., and Zonta, M. (2004) Neurotrophins in spinal cord nociceptive pathways. Prog. Brain Res. 146, 291–321.

    Article  PubMed  CAS  Google Scholar 

  18. Merighi, A., Salio, C., Ghirri, A., Lossi, L., Ferrini, F., Betelli, C., and Bardoni, R. (2008) BDNF as a pain modulator. Prog. Neurobiol. 85, 297–317.

    Article  PubMed  CAS  Google Scholar 

  19. Patel, Y. C., and Srikant, C. B. (1997) Somatostatin receptors. Trends Endocrinol. Metab. 8, 398–405.

    Article  CAS  Google Scholar 

  20. Olias, G., Viollet, C., Kusserow, H., Epelbaum, J. and Meyerhof, W. (2004) Regulation and function of somatostatin receptors. J. Neurochem. 89, 10571091.

    Article  PubMed  CAS  Google Scholar 

  21. Segond Von Banchet, G., Schindler, M., Hervieu, G. H., Beckmann, B., Emson, P. C., and Heppelmann, B. (1999) Distribution of somatostatin receptor subtypes in rat lumbar spinal cord examined with gold-labelled somatostatin and anti-receptor antibodies. Brain Research 816, 254–257.

    Article  PubMed  CAS  Google Scholar 

  22. Schulz, S., Schreff, M., Schmidt, H., Handel, M., Przewlocki, R. and Hollt, V. (1998a) Immunocytochemical localization of somatostatin receptor sst2A in the rat spinal cord and dorsal root ganglia. Eur. J. Neurosci. 10, 37003708.

    Article  PubMed  CAS  Google Scholar 

  23. Schulz, S., Schmidt, H., Handel, M., Schreff, M. and Hollt, V. (1998b) Differential distribution of alternatively spliced somatostatin receptor 2 isoforms (sst2A and sst2B) in rat spinal cord. Neurosci. Lett. 257, 3740.

    Article  PubMed  CAS  Google Scholar 

  24. Jing, S., Wen, D., Yu, Y., Holst, P. L., Luo, Y., Fang, M., Tamir, R., Antonio, L., Hu, Z., Cupples, R., Louis, J. C., Hu, S., Altrock, B. W. and Fox, G. M. (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85, 11131124.

    Article  PubMed  CAS  Google Scholar 

  25. Treanor, J. J., Goodman, L., de Sauvage, F., Stone, D. M., Poulsen, K. T., Beck, C. D., Gray, C., Armanini, M. P., Pollock, R. A., Hefti, F., Phillips, H. S., Goddard, A., Moore, M. W., Buj-Bello, A., Davies, A. M., Asai, N., Takahashi, M., Vandlen, R., Henderson, C. E. and Rosenthal, A. (1996) Characterization of a multicomponent receptor for GDNF. Nature 382, 8083.

    Article  PubMed  CAS  Google Scholar 

  26. Naveilhan, P., ElShamy, W. M. and Ernfors, P. (1997) Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur. J. Neurosci. 9, 14501460.

    Article  PubMed  CAS  Google Scholar 

  27. Sanicola, M., Hession, C., Worley, D., Carmillo, P., Ehrenfels, C., Walus, L., Robinson, S., Kaworski, G., Wei, H., Tizard, R., Whitty, A., Pepinsky, R.B. and Cate, R. L. (1997) Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. Proc. Natl. Acad. Sci. USA 94, 6238–6243.

    Article  PubMed  CAS  Google Scholar 

  28. Durbec, P., Marcos-Gutierrez, C. V., Kilkenny, C., Grigoriou, M., Wartiowaara, K., Suvanto, P., Smtih, D., Ponder, B., Costantini, F., Saarma, M., Sariola, H. and Pachnis V. (1996) GDNF signaling through the Ret receptor tyrosine kinase. Nature 381, 789793.

    Article  PubMed  CAS  Google Scholar 

  29. Trupp, M., Arenas, E., Fainzilber, M., Nilsson, A. S., Sieber, B. A., Grigoriu, M., Kilkenny, C., Salazar-Grueso, E., Pachnis, V. and Arumae, U. (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381, 785789.

    Article  PubMed  CAS  Google Scholar 

  30. Worby, C. A., Vega, Q. C., Zhao, Y., Chao, H. H., Seasholtz, A. F. and Dixon, J. E. (1996) Glial cell line-derived neurotrophic factor signals through the RET receptor and activates mitogen-activated protein kinase. J. Biol. Chem. 271, 2361923622.

    Article  PubMed  CAS  Google Scholar 

  31. Kaplan, D.R. and Stephens, R.M. (1994) Neurotrophin signal transduction by the Trk receptor. J. Neurobiol. 25, 1404–1417.

    Article  PubMed  CAS  Google Scholar 

  32. Kaplan, D.R. and Miller, F.D. (1997) Signal transduction by the neurotrophin receptors. Curr. Opin. Cell Biol. 9, 213–221.

    Article  PubMed  CAS  Google Scholar 

  33. Middlemas, D.S., Lindberg, R.A., and Hunter, T. (1991) trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Mol. Cell Biol. 11, 143–153.

    PubMed  CAS  Google Scholar 

  34. Barbacid, M. (1994) The Trk family of neurotrophin receptors. J. Neurobiol. 25, 1386–1403.

    Article  PubMed  CAS  Google Scholar 

  35. Klein, R., Conway, D., Parada, L.F., and Barbacid, M. (1990) The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61, 647–656.

    Article  PubMed  CAS  Google Scholar 

  36. Takizawa, T., Suzuki, K. and Robinson, J. M. (1998) Correlative Microscopy Using FluoroNanogold on Ultrathin Cryosections: Proof of Principle. J. Histochem. Cytochem. 46, 1097–1102.

    Article  PubMed  CAS  Google Scholar 

  37. Kramarcy, N. R. and Sealock, R. (1991) Commercial preparations of colloidal gold-antibody complexes frequently contain free active antibody. J. Histochem. Cytochem. 39, 3739.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Compagnia di San Paolo (Torino – Italy) and the Italian MiUR (Fondi PRIN 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Salio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Salio, C., Lossi, L., Merighi, A. (2011). Combined Light and Electron Microscopic Visualization of Neuropeptides and Their Receptors in Central Neurons. In: Merighi, A. (eds) Neuropeptides. Methods in Molecular Biology, vol 789. Humana Press. https://doi.org/10.1007/978-1-61779-310-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-310-3_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-309-7

  • Online ISBN: 978-1-61779-310-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics