Skip to main content

Visualization and Manipulation of the Platelet and Megakaryocyte Cytoskeleton

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 788))

Abstract

Driven by the application of immunofluorescence (IF) microscopy and modern molecular biology approaches to cytoskeletal manipulation, the last 5 years have yielded considerable progress to our understanding of the molecular mechanisms governing megakaryocyte development and platelet biogenesis. Such studies have visualized endomitotic spindle dynamics, characterized the maturation of the ­demarcation membrane system, delineated the mechanics of organelle transport and microtubule assembly in living megakaryocytes, described the process of platelet production in vivo, and revealed factors contributing to and the mechanisms driving proplatelet production and platelet release. Here, we describe methods to (1) culture megakaryocytes from murine fetal livers, (2) manipulate the tubulin and actin cytoskeleton of both platelets and cultured megakaryocytes, and (3) examine these by live-cell microscopy and fixed-cell immunofluorescence microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Choi ES, Nichol JL, Hokom MM, Hornkohl AC, Hunt P. Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood. 1995;85:402–413.

    PubMed  CAS  Google Scholar 

  2. Becker RP, DeBruyn PP. The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation. Am J Anat. 1976;145:1046–1052.

    Article  Google Scholar 

  3. Behnke O. An electron microscope study of the rat megakaryocyte. II. Some aspects of platelet release and microtubules. J Ultrastruct Res. 1969;26:111–129.

    Article  PubMed  CAS  Google Scholar 

  4. Radley JM, Scurfield G. The mechanism of platelet release. Blood. 1980;56:996–999.

    PubMed  CAS  Google Scholar 

  5. Tavassoli M, Aoki M. Migration of entire megakaryocytes through the marrow-blood barrier. British Journal of Hematology. 1981;48:25–29.

    Article  CAS  Google Scholar 

  6. Lecine P, Villeval J, Vyas P, Swencki B, Yuhui X, Shivdasani RA. Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes. Blood. 1998;92:1608–1616.

    PubMed  CAS  Google Scholar 

  7. Shivdasani R, Orkin S. The transcriptional control of hematopoiesis. Blood. 1996;87:4025–4039.

    PubMed  CAS  Google Scholar 

  8. Shivdasani RA. Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cells. 2001;19:397–407.

    Article  PubMed  CAS  Google Scholar 

  9. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995;81:695–704

    Article  PubMed  CAS  Google Scholar 

  10. Tablin F, Castro M, Leven RM. Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation. J Cell Sci. 1990;97 (Pt 1):59–70.

    PubMed  Google Scholar 

  11. Handagama PJ, Feldman BF, Jain NC, Farver TB, Kono CS. In vitro platelet release by rat megakaryocytes: effect of metabolic inhibitors and cytoskeletal disrupting agents. Am J Vet Res. 1987;48:1142–1146.

    PubMed  CAS  Google Scholar 

  12. Hartwig JH, Italiano JE, Jr. Cytoskeletal mechanisms for platelet production. Blood Cells Mol Dis. 2006;36:99–103.

    Article  PubMed  CAS  Google Scholar 

  13. White JG, Krivit W. An ultrastructural basis for the shape changes induced in platelets by chilling. Blood. 1967;30:625–635.

    PubMed  CAS  Google Scholar 

  14. Villeval JL, Cohen-Solal K, Tulliez M, et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood. 1997;90:4369–4383.

    PubMed  CAS  Google Scholar 

  15. Italiano JE, Jr., Lecine P, Shivdasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol. 1999;147:1299–1312

    Article  PubMed  CAS  Google Scholar 

  16. Lecine P, Italiano JE, Jr., Kim SW, Villeval JL, Shivdasani RA. Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet ­biogenesis dependent on the transcription ­factor NF-E2. Blood. 2000;96:1366–1373.

    PubMed  CAS  Google Scholar 

  17. Patel SR, Richardson JL, Schulze H, et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood. 2005;106:4076–4085.

    Article  PubMed  CAS  Google Scholar 

  18. Schulze H, Korpal M, Bergmeier W, Italiano JE, Jr., Wahl SM, Shivdasani RA. Interactions between the megakaryocyte/platelet-specific beta1 tubulin and the secretory leukocyte protease inhibitor SLPI suggest a role for regulated proteolysis in platelet functions. Blood. 2004;104:3949–3957.

    Article  PubMed  CAS  Google Scholar 

  19. Stepanova T, Slemmer J, Hoogenraad CC, et al. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J Neurosci. 2003;23:2655–2664.

    PubMed  CAS  Google Scholar 

  20. Ehrengruber MU, Lundstrom K, Schweitzer C, Heuss C, Schlesinger S, Gahwiler BH. Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc Natl Acad Sci USA. 1999;96:7041–7046.

    Article  PubMed  CAS  Google Scholar 

  21. Lundstrom K, Schweitzer C, Rotmann D, Hermann D, Schneider EM, Ehrengruber MU. Semliki Forest virus vectors: efficient vehicles for in vitro and in vivo gene delivery. FEBS Lett. 2001;504:99–103.

    Article  PubMed  CAS  Google Scholar 

  22. Waters JC. Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol. 2009;185:1135–1148.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health Grant HL68130 (J.E.I.). J.E.I. is an American Society of Hematology Junior Faculty Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Italiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thon, J.N., Italiano, J.E. (2012). Visualization and Manipulation of the Platelet and Megakaryocyte Cytoskeleton. In: Gibbins, J., Mahaut-Smith, M. (eds) Platelets and Megakaryocytes. Methods in Molecular Biology, vol 788. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-307-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-307-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-306-6

  • Online ISBN: 978-1-61779-307-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics