Skip to main content

3-Nitropropionic Acid and Other Metabolic Toxin Lesions of the Striatum

  • Protocol
  • First Online:
Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 62))

  • 885 Accesses

Abstract

Huntington’s disease (HD) is a progressive neurodegenerative disorder associated with severe degeneration of basal ganglia neurons. Histologically, the striatum displays neurodegeneration of the intrinsic neurons of the striatum, whereas the behavioral symptoms are primarily characterized by progressive dementia and involuntary abnormal choreiform movements. This pathophysiology of HD has been linked to a genetic mutation in the huntingtin gene, which laid the foundation for generating transgenic and knock-in rodents that display a similar genetic defect. Despite this scientific advance in our knowledge of the disease pathophysiology over the last two decades, there is no cure for HD. Conventional animal models, via mitochondrial impairment and excitotoxicity-induced neurodegeneration, which have established cell death pathways in HD remain as mainstream platform for studying the disease. The focus of this book chapter is on the mitochondrial inhibitor 3-nitropropionic acid (3-NP). We previously demonstrated that systemic administration of 3-NP leads to a progressive locomotor deterioration accompanied by a very selective striatal degeneration resembling that of HD. Subsequent studies from our laboratory further showed that manipulating the time course of 3-NP injections leads to sustained hyperactivity (early HD) or hypoactivity (late HD). This mitochondrial impairment model differs mechanistically from excitotoxic lesions in that 3-NP irreversibly inhibits the mitochondrial citric acid cycle and leads to depressed ATP levels and elevated lactate concentrations. Neurochemical assays lend support to impaired oxidative energy metabolism as key neurodegenerative process in this 3-NP model. Because of the mechanistic and pathologic similarities between 3-NP lesions and HD, 3-NP is considered a suitable HD model. We review here the rodent and non-human primate 3-NP models and other mitochondrial inhibitors similarly employed to lesion the striatum. The goal is to provide a scientific rationale for the continued use of these mitochondrial impairment models which should complement the genetic models in further understanding the disease pathology and to serve as tools for evaluating experimental therapeutics for HD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin JB, Gusella JF (1986) Huntington’s disease: pathenogenesis and management. N Engl J Med 315:1267–1276

    PubMed  CAS  Google Scholar 

  2. Shoulson I, Asbury A, McKhann GM, McDonald I (1986) Huntington’s Disease: The disease of the nervous system. Ardmore Medical Books (W. B. Saunders): Philadephia

    Google Scholar 

  3. Maragos WF, Young KL, Altman CS, Pocernich CB, Drake J, Butterfield DA, Seif I, Holschneider DP, Chen K, Shih JC (2004) Striatal damage and oxidative stress induced by the mitochondrial toxin malonate are reduced in clorgyline-treated rats and MAO-A deficient mice. Neurochem Res 29(4):741–746

    PubMed  CAS  Google Scholar 

  4. The Huntington’s Collaborative Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Google Scholar 

  5. Koutouzis TK, Emerich D, Borlongan CV, Freeman TB, Cahill DW, Sanberg PR (1991) Cell transplantation for central nervous system disorders. CRC Crit Rev Neurobiol 3:25–162

    Google Scholar 

  6. Zorumski CF, Olney JW (1993) Excitotoxic neuronal damage and neuropsychiatric disorders. J Pharm Ther 59:145–162

    CAS  Google Scholar 

  7. Albin RL, Greenamyre JT (1992) Alternative excitotoxic hypothesis. Neurol 42:733–738

    CAS  Google Scholar 

  8. Ankarcrona M, Dypbukt JM. Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973

    Google Scholar 

  9. Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31:119–130

    PubMed  CAS  Google Scholar 

  10. Cox JA, Lysko PG, Henneberry RC (1989) Excitatory amino acid neurotoxicity at the N-methyl-D-aspartate receptor in cultured neurons: role of the voltage-dependent magnesium block. Brain Res 499:267–272

    PubMed  CAS  Google Scholar 

  11. Novelli A, Reilly LA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energies are reduced. Brain Res 451:205–212

    PubMed  CAS  Google Scholar 

  12. Koroshetz WJ, Jenkins BG, Beal MF, Rosen BR (1992) Localized proton-NMR spectroscopy in patients with Huntington’s disease (HD) demonstrates abnormal lactate levels in occipital cortex: evidence for compromised metabolism in HD. Neurology 42:319

    Google Scholar 

  13. Sanberg PR, Coyle JT (1984) Scientific approaches to Huntington’s disease. CRC Crit Rev Clin Neurobiol 1:1–44

    PubMed  CAS  Google Scholar 

  14. Hantraye P, Riche D, Maziere M, Isacson O (1990) A primate model of Huntington’s disease: behavioural and anatomical studies of unilateral excitotoxic lesions of the caudate-putaman in the baboon. Exp Neurol 108:91–104

    PubMed  CAS  Google Scholar 

  15. Isacson O, Brundin P, Gage FH, Bjorkland A (1985) Neural grafting in the rat model of Huntington’s disease: progressive neuro-chemical changes after neostriatal ibotenate lesions and tissue grafting. Neurosci 16:799–817

    CAS  Google Scholar 

  16. Beal MF, Broulillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Strivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4182

    PubMed  CAS  Google Scholar 

  17. Ludolph AC, He F, Spencer PF, Hammerstad J, Sabri M (1991) 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492–498

    PubMed  CAS  Google Scholar 

  18. Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Strivastava R, Roy DS, Rosen BR, Beal MF (1993) Age dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neutochem 60:356–359

    CAS  Google Scholar 

  19. Nishino H, Shimano Y, Kumazaki M, Sakurai T (1995) Chronically administered 3-nitropropionic acid induces striatal lesions attributed to dysfunction of the blood-brain barrier. Neurosci Lett 186:161–164

    PubMed  CAS  Google Scholar 

  20. Shimano Y, Kumazaki M, Sakurai T, Hida H, Fujimoto I, Fukuda A, Nishino H (1995) Chronically administered 3-nitropropionic acid produces selective lesions in the striatum and reduces muscle tonus. Obesity Res 3:779–784

    Google Scholar 

  21. Hamilton BF, Gould DH (1987) Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage. Acta Neuropathol 72:286–297

    PubMed  CAS  Google Scholar 

  22. Bossi SR, Simpson JR, Isacson O (1993) Age dependence of striatal neuronal death caused by mitochondrial dysfunction. Neuroreport 4:73–76

    PubMed  CAS  Google Scholar 

  23. Borlongan CV, Koutouzis TK, Cahill DW, Freeman TB, Sanberg PR (1995) Systemic 3-nitropropionic acid: behavioral deficits and striatal damage in rats. Brain Res Bull 36:549–556

    PubMed  CAS  Google Scholar 

  24. Koutouzis TK, Borlongan CV, Scorcia T, Creese, I, Cahill DW, Freeman T B, Sanberg PR (1994) Systemic 3-nitropropionic acid: long effects on locomotor behavior. Brain Res Rev 64:242–244

    Google Scholar 

  25. Filloux F, Wagster MV, Folstein S, Price DL, Hedreen JC, Dawson TM, Wamsley JK (1990) Nigral dopamine type-1 are reduced in Huntington’s disease: a postmortem autoradiographic study using the [3H] SCH23390 and correlation with [3H] forskolin binding. Exp Neurol 110:219–227

    PubMed  CAS  Google Scholar 

  26. Gould DH, Gustine DL (1982) Basal ganglia degeneration, myelin alterations, and enzyme inhibition in mice induced by the plant toxin 3- nitropropionic acid. Neuropathol Appl Neurobiol 8:377–393

    PubMed  CAS  Google Scholar 

  27. Zorumski CF, Olney JW (1993) Excitotoxic neuronal damage and neuropsychiatric disorders. J Pharm Ther 59:145–162

    CAS  Google Scholar 

  28. Borlongan CV, Koutouzis TK, Cahill DW, Freeman TB, Sanberg PR (1995) Behavioral pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington’s disease. Brain Res 697:254–257

    PubMed  CAS  Google Scholar 

  29. Bruyn GW (1968) Huntington’s chorea, historical, clinical and laboratory synopsis. Handbook Clin Neurol 6:298–378

    Google Scholar 

  30. Brouillet E, Hantraye P, Dolan R, Leroy-Willig A, Bottlaender M. Isacson O, Maziere M, Ferrante RJ, Beal MF (1993) Soc Neurosci Absa 19:409

    Google Scholar 

  31. Koutouzis TK, Borlongan CV, Cahill DW, Freeman TB, Sanberg PR (1994) Intrastriatal 3-nitropropionic acid: a behavioral assessment. Neuroreport 5:2241–2245

    PubMed  CAS  Google Scholar 

  32. Mettler, FA (1972) Choreoathetosis and striopallidonigral necrosis due to sodium azide. Exp. Neurol. 34:291–308

    PubMed  CAS  Google Scholar 

  33. Stober T, Wussow W, Schimrigk K (1984) Bicaudate diameter – the most specific and simplified CT parameter in the diagnosis of Huntington’s disease. Neuroradiol 26:25–28

    CAS  Google Scholar 

  34. Almeida S, Domingues A, Rodrigues L, Oliveira CR, Rego AC (2004) FK506 prevents mitochondrial-dependent apoptotic cell death induced by 3-nitropropionic acid in rat primary cortical cultures. Neurobiol Dis 17(3):435–444

    PubMed  CAS  Google Scholar 

  35. Luchowska E, Luchowski P, Wielosz M, Turski WA, Urbanska EM (2003) FK506 attenuates 1-methyl-4-phenylpyridinium- and 3-nitropropionic acid-evoked inhibition of kynurenic acid synthesis in rat cortical slices. Acta Neurobiol Exp (Wars) 63(2):101–108

    Google Scholar 

  36. Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, Wajner M, Castilho RF (2004) Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem 90(5):1025–1035

    PubMed  CAS  Google Scholar 

  37. Keller JN, Guo Q, Holtsberg FW, Bruce-Keller AJ, Mattson MP (1998) Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 18(12):4439–4450

    PubMed  CAS  Google Scholar 

  38. Mao Z, Choo YS, Lesort M (2006) Cystamine and cysteamine prevent 3-NP-induced mitochondrial depolarization of Huntington’s disease knock0in striatal cells. Eur J Neurosci 23(7):1701–1710

    PubMed  Google Scholar 

  39. Lee J, Kim CH, Simon DK, Aminova LR, Andreyev AY, Kushnareva YE, et al. (2005) Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem 280(49):40398–40401

    PubMed  CAS  Google Scholar 

  40. Wu CL, Chen SD, Yin JH, Hwang CS, Yang DI (2010) Erythropoietin and sonic hedgehog mediate the neurotrophic factor against mitochondrial inhibition. Neurobiol Dis 40(1):146–154

    PubMed  CAS  Google Scholar 

  41. Calkins MJ, Townsend JA, Johnson DA, Johnson JA (2010) Cystamine protects from 3-nitropropionic acid lesioning via induction of nf-e2 related factor 2 mediated transcription. Exp Neurol 224(1):307–317

    PubMed  CAS  Google Scholar 

  42. Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, Murphy TH (2005) Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 280(24):22925–22936

    PubMed  CAS  Google Scholar 

  43. Wang L, Ankati H, Akubathini SK, Balderamos M, Storey CA, Patel AV, Price V, Kretzschmar D, Biehl ER, D’Mello SR (2010) Identification of novel 1,4-benzoxazine compounds that are protective in tissue culture and in vivo models of neurodegeneration. J Neurosci Res 88(9):1970–1984

    PubMed  CAS  Google Scholar 

  44. Tantucci M, Mariucci G, Taha E, Spaccatini C, Tozzi A, Luchetti E, Calabresi P, Ambrosini MV (2009) Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment. Neuroscience 163(3):735–740

    PubMed  CAS  Google Scholar 

  45. Almeida S, Laço M, Cunha-Oliveira T, Oliveira CR, Rego AC (2009) BDNF regulates BIM expression levels in 3-nitropropionic acid-treated cortical neurons. Neurobiol Dis 35(3):448–456

    PubMed  CAS  Google Scholar 

  46. Lee ST, Park JE, Kim DH, Kim S, Im WS, Kang L, Jung SH, Kim MW, Chu K, Kim M (2008) Granulocyte-colony stimulating factor attenuates striatal degeneration with activating survival pathways in 3-nitropropionic acid model of Huntington’s disease. Brain Res 1194:130–137

    PubMed  CAS  Google Scholar 

  47. Hellweg R, von Arnim CA, Büchner M, Huber R, Riepe MW (2003) Neuroprotection and neuronal dysfunction upon repetitive inhibition of oxidative phosphorylation. Exp Neurol 183(2):346–354

    PubMed  CAS  Google Scholar 

  48. Hanbury R, Ling ZD, Wuu J, Kordower JH (2003) GFAP knockout mice have increased levels of GDNF that protect striatal neurons from metabolic and excitotoxic insults. J Comp Neurol 461(3):307–316

    PubMed  CAS  Google Scholar 

  49. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 22(15):6401–6407

    PubMed  CAS  Google Scholar 

  50. Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Beal MF (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109(5):1427–1439

    PubMed  CAS  Google Scholar 

  51. Andres RH, Ducray AD, Huber AW, Pérez-Bouza A, Krebs SH, Schlattner U, Seiler RW, Wallimann T, Widmer HR (2005) Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue. J Neurochem 95(1):33–45

    PubMed  CAS  Google Scholar 

  52. Sagredo O, Ramos JA, Decio A, Mechoulam R, Fernández-Ruiz J (2007) Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur J Neurosci 26(4):843–851

    PubMed  Google Scholar 

  53. de Lago E, Fernández-Ruiz J, Ortega-Gutiérrez S, Cabranes A, Pryce G, Baker D, López-Rodríguez M, Ramos JA (2006) UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntington’s disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. Eur Neuropsychopharmacol 16(1):7–18

    PubMed  Google Scholar 

  54. Chin PC, Liu L, Morrison BE, Siddiq A, Ratan RR, Bottiglieri T, D’Mello SR (2004) The c-Raf inhibitor GW5074 provides neuroprotection in vitro and in an animal model of neurodegeneration through a MEK-ERK and Akt-independent mechanism. J Neurochem 90(3):595–608

    PubMed  CAS  Google Scholar 

  55. Karanian DA, Baude AS, Brown QB, Parsons CG, Bahr BA (2006) 3-Nitropropionic acid toxicity in hippocampus: protection through N-methyl-D-aspartate receptor antagonism. Hippocampus 16(10):834–842

    PubMed  CAS  Google Scholar 

  56. García O, Massieu L (2001) Strategies for neuroprotection against L-trans-2,4-pyrrolidine dicarboxylate-induced neuronal damage during energy impairment in vitro. J Neurosci Res 64(4):418–428

    PubMed  Google Scholar 

  57. Binienda Z, Przybyla-Zawislak B, Virmani A, Schmued L (2005) L-carnitine and neuroprotection in the animal model of mitochondrial dysfunction. Ann N Y Acad Sci 1053:174–182

    PubMed  CAS  Google Scholar 

  58. Yang L, Calingasan NY, Chen J, Ley JJ, Becker DA, Beal MF (2005) A novel azulenyl nitrone antioxidant protects against MPTP and 3-nitropropionic acid neurotoxicities. Exp Neurol 191(1):86–93

    PubMed  CAS  Google Scholar 

  59. Dykens JA, Simpkins JW, Wang J, Gordon K (2003) Polycyclic phenols, estrogens and neuroprotection: a proposed mitochondrial mechanism. Exp Gerontol 38(1–2):101–107

    PubMed  CAS  Google Scholar 

  60. Borlongan CV, Yamamoto M, Takei N, Kumazaki M, Ungsuparkorn C, Hida H, Sanberg PR, Nishino H (2000) Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia. FASEB J 14(10):1307–1317

    PubMed  CAS  Google Scholar 

  61. Bizat N, Hermel JM, Humbert S, Jacquard C, Créminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E (2003) In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278(44):43245–43253

    PubMed  CAS  Google Scholar 

  62. Blum D, Gall D, Galas MC, d’Alcantara P, Bantubungi K, Schiffmann SN (2002) The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity. J Neurosci 22(20):9122–9133

    Google Scholar 

  63. Keene CD, Rodrigues CM, Eich T, Linehan-Stieers C, Abt A, Kren BT, Steer CJ, Low WC (2001) A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington’s disease. Exp Neurol 171(2):351–360

    PubMed  CAS  Google Scholar 

  64. Borlongan CV, Koutouzis TK, Poulos SG, Saporta S, Sanberg PR (1998) Bilateral fetal striatal grafts in the 3-nitropropionic acid-induced hypoactive model of Huntington’s disease. Cell Transplant 7(2):131–135

    PubMed  CAS  Google Scholar 

  65. Palfi S, Condé F, Riche D, Brouillet E, Dautry C, Mittoux V, Chibois A, Peschanski M, Hantraye P (1998) Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Nat Med 4(8):963–966

    PubMed  CAS  Google Scholar 

  66. Canals JM, Checa N, Marco S, Akerud P, Michels A, Pérez-Navarro E, Tolosa E, Arenas E, Alberch J (2001) Expression of brain-derived neurotrophic factor in cortical neurons is regulated by striatal target area. J Neurosci 21(1):117–1124

    PubMed  CAS  Google Scholar 

  67. Ryu JK, Kim J, Cho SJ, Hatori K, Nagai A, Choi HB, Lee MC, McLarnon JG, Kim SU (2004) Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol Dis (1):68–77

    Google Scholar 

  68. Madhavan L, Ourednik V, Ourednik J (2005) Grafted neural stem cells shield the host environment from oxidative stress. Ann N Y Acad Sci 1049:185–188

    PubMed  Google Scholar 

  69. Madhavan L, Ourednik V, Ourednik J (2008) Neural stem/progenitor cells initiate the formation of cellular networks that provide neuroprotection by growth factor-modulated antioxidant expression. Stem Cells (1):254–265

    Google Scholar 

  70. Roberts TJ, Price J, Williams SC, Modo M (2006) Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington’s disease. Neuroscience 139(4):1187–1199

    PubMed  CAS  Google Scholar 

  71. Roberts TJ, Price J, Williams SC, Modo M (2007) Pharmacological MRI of stem cell transplants in the 3-nitropropionic acid-­damaged striatum. Neuroscience 144(1):100–109

    PubMed  CAS  Google Scholar 

  72. Rossignol J, Boyer C, Lévèque X, Fink KD, Thinard R, Blanchard F, Dunbar GL, Lescaudron L (2011) Mesenchymal stem cell transplantation and DMEM administration in a 3NP rat model of Huntington’s disease: morphological and behavioral outcomes. Behav Brain Res 217(2):369–378

    PubMed  CAS  Google Scholar 

  73. Kulikov AV, Stepanova MS, Stvolinsky SL, Hudoerkov RM, Voronkov DN, Rzhaninova AA, Goldstein DV, Boldyrev AA (2008) Application of multipotent mesenchymal stromal cells from human adipose tissue for compensation of neurological deficiency induced by 3-nitropropionic Acid in rats. Bull Exp Biol Med145(4):514–519

    Google Scholar 

  74. Huang QY, Yu L, Ferrante RJ, Chen JF (2007) Mutant SOD1G93A in bone marrow-derived cells exacerbates 3-nitropropionic acid induced striatal damage in mice. Neurosci Lett 418(2):175–180

    PubMed  CAS  Google Scholar 

  75. Mettler FA (1972) Choreoathetosis and striopallidonigral necrosis due to sodium azide. Exp Neurol 34(2):291–308

    PubMed  CAS  Google Scholar 

  76. Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Strivastava R, Roy DS, Rosen BR, Beal MF (1994) Systemic or local administration of azide produces striatal lesions by a energy impairment-induced excitotoxic mechanism. Exp Neural 129:175–182

    CAS  Google Scholar 

  77. Knyihár-Csillik E, Okuno E, Vécsei L (1999) Effects of in vivo sodium azide administration on the immunohistochemical localization of kynurenine aminotransferase in the rat brain. Neuroscience 94(1):269–277

    PubMed  Google Scholar 

  78. Smith TS, Bennett JP Jr (1997) Mitochondrial toxins in models of neurodegenerative diseases. I: In vivo brain hydroxyl radical production during systemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ions. Brain Res 765(2):183–188

    PubMed  CAS  Google Scholar 

  79. Berndt JD, Callaway NL, Gonzalez-Lima F (2001) Effects of chronic sodium azide on brain and muscle cytochrome oxidase activity: a potential model to investigate environmental contributions to neurodegenerative diseases. J Toxicol Environ Health A 63(1):67–77

    PubMed  CAS  Google Scholar 

  80. Vécsei L, Tajti J, Klivényi P, Pinter S, Karg E (2001) Sodium azide treatment decreases striatal and cortical concentrations of alpha-tocopherol in rats. J Neural Transm 108(3):273–278

    PubMed  Google Scholar 

  81. Siniscalchi A, Cavallini S, Marino S, Falzarano S, Franceschetti L, Selvatici R (2006) Effects of chemical ischemia on cerebral cortex slices: focus on mitogen-activated protein kinase cascade. Ann N Y Acad Sci 1090:445–454

    PubMed  CAS  Google Scholar 

  82. García O, Massieu L (2001) Strategies for neuroprotection against L-trans-2,4-pyrrolidine dicarboxylate-induced neuronal damage during energy impairment in vitro. J Neurosci Res 64(4):418–28

    PubMed  Google Scholar 

  83. Sziráki I, Mohanakumar KP, Rauhala P, Kim HG, Yeh KJ, Chiueh CC (1998) Manganese: a transition metal protects nigrostriatal neurons from oxidative stress in the iron-induced animal model of parkinsonism. Neuroscience 85(4):1101–1111

    PubMed  Google Scholar 

  84. Sun XD, Lee EW, Wong EH, Lee KS (2000) ATP-sensitive potassium channels in freshly dissociated adult rat striatal neurons: activation by metabolic inhibitors and the dopaminergic receptor agonist quinpirole. Pflugers Arch 440(4):530–547

    PubMed  CAS  Google Scholar 

  85. Lee K, Dixon AK, Freeman TC, Richardson PJ (1998) Identification of an ATP-sensitive potassium channel current in rat striatal cholinergic interneurones. J Physiol 510 (Pt 2):441–453.

    PubMed  CAS  Google Scholar 

  86. Bagetta V, Barone I, Ghiglieri V, Di Filippo M, Sgobio C, Bernardi G, Calabresi P, Picconi B (2008) Acetyl-L-Carnitine selectively prevents post-ischemic LTP via a possible action on mitochondrial energy metabolism. Neuropharmacology 55(2):223–229

    PubMed  CAS  Google Scholar 

  87. Grammatopoulos TN, Johnson V, Moore SA, Andres R, Weyhenmeyer JA (2004) Angiotensin type 2 receptor neuroprotection against chemical hypoxia is dependent on the delayed rectifier K+ channel, Na+/Ca2+ exchanger and Na+/K+ ATPase in primary cortical cultures. Neurosci Res 50(3):299–306

    PubMed  CAS  Google Scholar 

  88. Zhu M, Li MW, Tian XS, Ou XM, Zhu CQ, Guo JC (2009) Neuroprotective role of delta-opioid receptors against mitochondrial respiratory chain injury. Brain Res 1252:183–191

    PubMed  CAS  Google Scholar 

  89. Katnik C, Guerrero WR, Pennypacker KR, Herrera Y, Cuevas J (2006) Sigma-1 receptor activation prevents intracellular calcium dysregulation in cortical neurons during in vitro ischemia. J Pharmacol Exp Ther 319(3):1355–1365.

    PubMed  CAS  Google Scholar 

  90. Regan RF, Guo Y (1997) Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures. Brain Res 764(1–2):133–140

    PubMed  CAS  Google Scholar 

  91. Greene JG, Porter RH, Eller RV, Greenamyre JT (1993) Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum. J Neurochem 61(3):1151–1154

    PubMed  CAS  Google Scholar 

  92. Ferger B, Eberhardt O, Teismann P, de Groote C, Schulz JB (1999) Malonate-induced generation of reactive oxygen species in rat striatum depends on dopamine release but not on NMDA receptor activation. J Neurochem 73(3):1329–1332

    PubMed  CAS  Google Scholar 

  93. Henshaw R, Jenkins BG, Schulz JB, Ferrante RJ, Kowall NW, Rosen BR, Beal MF (1994) Malonate produces striatal lesions by indirect NMDA receptor activation. Brain Res 647(1):161–166

    PubMed  CAS  Google Scholar 

  94. Greene JG, Greenamyre JT (1996) Manipulation of membrane potential modulates malonate-induced striatal excitotoxicity in vivo. J Neurochem 66(2):637–643

    PubMed  CAS  Google Scholar 

  95. Lecanu L, Margaill I, Boughali H, Cohen-Tenoudji B, Boulu RG, Plotkine M (1998) Deleterious Ca-independent NOS activity after oxidative stress in rat striatum. Neuroreport 9(3):559–563

    PubMed  CAS  Google Scholar 

  96. Klivenyi P, Andreassen OA, Ferrante RJ, Dedeoglu A, Mueller G, Lancelot E, Bogdanov M, Andersen JK, Jiang D, Beal MF (2000) Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J Neurosci 20(1):1–7

    PubMed  CAS  Google Scholar 

  97. Paucard A, Besson VC, Plotkine M, Margaill I (2005) Time course of oxidative stress, lesion and edema after intrastriatal injection of malonate in rat: effect of alpha-phenyl-N-tert-butylnitrone. Fundam Clin Pharmacol 19(1):57–64

    PubMed  CAS  Google Scholar 

  98. Xia XG, Schmidt N, Teismann P, Ferger B, Schulz JB (2001) Dopamine mediates striatal malonate toxicity via dopamine transporter-dependent generation of reactive oxygen species and D2 but not D1 receptor activation. J Neurochem 79(1):63–70

    PubMed  CAS  Google Scholar 

  99. Petersén A, Puschban Z, Lotharius J, NicNiocaill B, Wiekop P, O’Connor WT, Brundin P (2002) Evidence for dysfunction of the nigrostriatal pathway in the R6/1 line of transgenic Huntington’s disease mice. Neurobiol Dis 11(1):134–146

    PubMed  Google Scholar 

  100. Hansson O, Castilho RF, Korhonen L, Lindholm D, Bates GP, Brundin P (2001) Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington’s disease is dependent on age and CAG repeat length. J Neurochem 78(4):694–703

    PubMed  CAS  Google Scholar 

  101. Beal MF, Henshaw DR, Jenkins BG, Rosen BR, Schulz JB (1994) Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann Neurol 36(6):882–888

    PubMed  CAS  Google Scholar 

  102. Schulz JB, Matthews RT, Jenkins BG, Brar P, Beal MF (1995) Improved therapeutic window for treatment of histotoxic hypoxia with a free radical spin trap. J Cereb Blood Flow Metab 15(6):948–952

    PubMed  CAS  Google Scholar 

  103. Li J, Calkins MJ, Johnson DA, Johnson JA (2007) Role of Nrf2-dependent ARE-driven antioxidant pathway in neuroprotection. Methods Mol Biol 399:67–78

    PubMed  CAS  Google Scholar 

  104. Alfinito PD, Wang SP, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK (2003) Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci 23(34):10982–10987

    PubMed  CAS  Google Scholar 

  105. Fancellu R, Armentero MT, Nappi G, Blandini F (2003) Neuroprotective effects mediated by dopamine receptor agonists against malonate-induced lesion in the rat striatum. Neurol Sci 24(3):180–181

    PubMed  CAS  Google Scholar 

  106. Maragos WF, Young KL, Altman CS, Pocernich CB, Drake J, Butterfield DA, Seif I, Holschneider DP, Chen K, Shih JC (2004) Striatal damage and oxidative stress induced by the mitochondrial toxin malonate are reduced in clorgyline-treated rats and MAO-A deficient mice. Neurochem Res 29(4):741–746

    PubMed  CAS  Google Scholar 

  107. Maragos WF, Tillman PA, Chesnut MD, Jakel RJ (1999) Clorgyline and deprenyl attenuate striatal malonate and 3-nitropropionic acid lesions. Brain Res 834(1–2):168–172

    PubMed  CAS  Google Scholar 

  108. Lorenc-Koci E, Gołembiowska K, Wardas J (2005) 1,2,3,4-Tetrahydroisoquinoline protects terminals of dopaminergic neurons in the striatum against the malonate-induced neurotoxicity. Brain Res 1051(1–2):145–154.

    PubMed  CAS  Google Scholar 

  109. Morland C, Boldingh KA, Iversen EG, Hassel B (2004) Valproate is neuroprotective against malonate toxicity in rat striatum: an association with augmentation of high-affinity glutamate uptake. J Cereb Blood Flow Metab (11):1226–1234

    Google Scholar 

  110. Toulmond S, Tang K, Bureau Y, Ashdown H, Degen S, O’Donnell R, et al. (2004) Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington’s disease. Br J Pharmacol 141(4):689–697

    PubMed  CAS  Google Scholar 

  111. Cornet S, Spinnewyn B, Delaflotte S, Charnet C, Roubert V, Favre C, Hider H, Chabrier PE, Auguet M (2004) Lack of evidence of direct mitochondrial involvement in the neuroprotective effect of minocycline. Eur J Pharmacol 505(1–3):111–119

    PubMed  CAS  Google Scholar 

  112. Sagredo O, González S, Aroyo I, Pazos MR, Benito C, Lastres-Becker I, Romero JP, Tolón RM, Mechoulam R, Brouillet E, Romero J, Fernández-Ruiz J. (2009) Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington’s disease.Glia 57(11):1154–1167

    Google Scholar 

  113. Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Brouillet E, Fernández-Ruiz J (2003) Effects of cannabinoids in the rat model of Huntington’s disease generated by an intrastriatal injection of malonate. Neuroreport 14(6):813–816

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar V. Borlongan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Borlongan, C.V., Sanberg, P.R. (2011). 3-Nitropropionic Acid and Other Metabolic Toxin Lesions of the Striatum. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics