Skip to main content

Combination Lesion Models of MSA

  • Protocol
  • First Online:
  • 872 Accesses

Part of the book series: Neuromethods ((NM,volume 62))

Abstract

Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disorder presenting with parkinsonism, cerebellar ataxia, and autonomic failure in various combinations. The main pathological hallmark is the formation of (oligo-) glial cytoplasmic inclusions (GCIs) composed of alpha-synuclein (α-syn) aggregates (also called Papp–Lantos bodies). In the past decades, increasing insights into disease pathophysiology led to a variety of animal models as testbeds for interrentional therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wenning G K, Tison F, Ben Shlomo Y, Daniel S E, Quinn N P (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12, 133–147

    Article  PubMed  CAS  Google Scholar 

  2. Wenning G K, Colosimo C, Geser F, Poewe W (2004) Multiple system atrophy. Lancet Neurol 3, 93–103

    Article  PubMed  Google Scholar 

  3. Bower J H, Maraganore D M, McDonnell S K, Rocca W A (1997) Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 49, 1284–1288

    PubMed  CAS  Google Scholar 

  4. Wakabayashi K, Takahashi H (2006) Cellular pathology in multiple system atrophy. Neuropathology 26, 338–345

    Article  PubMed  Google Scholar 

  5. Gelb D J, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56, 33–39

    Article  PubMed  CAS  Google Scholar 

  6. Gilman S, Low P, Quinn N, Albanese A, Ben-Shlomo Y, Fowler C, et al. (1998) Consensus statement on the diagnosis of multiple system atrophy. American Autonomic Society and American Academy of Neurology. Clin Auton Res 8, 359–362

    CAS  Google Scholar 

  7. Wenning G K, Ben Shlomo Y, Magalhaes M, Daniel S E, Quinn N P (1994) Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain 117 (Pt 4), 835–845

    Google Scholar 

  8. Kahle P J, Neumann M, Ozmen L, Muller V, Odoy S, Okamoto N et al. (2001) Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol 159, 2215–2225

    Article  PubMed  CAS  Google Scholar 

  9. Yazawa I, Giasson B I, Sasaki R, Zhang B, Joyce S, Uryu K, Trojanowski J Q, Lee V M (2005) Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 45, 847–859

    Article  PubMed  CAS  Google Scholar 

  10. Shults C W, Rockenstein E, Crews L, Adame A, Mante M, Larrea G et al. (2005) Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci 25, 10689–10699

    Article  PubMed  CAS  Google Scholar 

  11. Zuscik M J, Sands S, Ross S A, Waugh D J, Gaivin R J, Morilak D, Perez D M (2000) Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat Med 6, 1388–1394

    Article  PubMed  CAS  Google Scholar 

  12. Brooks S P, Dunnett S B (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10, 519–529

    Article  PubMed  CAS  Google Scholar 

  13. Andreassen O A, Ferrante R J, Hughes D B, Klivenyi P, Dedeoglu A, Ona V O, Friedlander R M, Beal M F (2000) Malonate and 3-nitropropionic acid neurotoxicity are reduced in transgenic mice expressing a caspase-1 dominant-­negative mutant. J Neurochem 75, 847–852

    Article  PubMed  CAS  Google Scholar 

  14. Beal M F (1994) Huntington’s disease, energy, and excitotoxicity. Neurobiol Aging 15, 275–276

    Article  PubMed  CAS  Google Scholar 

  15. Bogdanov M B, Ferrante R J, Kuemmerle S, Klivenyi P, Beal M F (1998) Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington’s disease. J Neurochem 71, 2642–2644

    Article  PubMed  CAS  Google Scholar 

  16. Brouillet E, Hantraye P (1995) Effects of chronic MPTP and 3-nitropropionic acid in nonhuman primates. Curr Opin Neurol 8, 469–473

    Article  PubMed  CAS  Google Scholar 

  17. Ghorayeb I, Fernagut PO, Hervier L, Labattu B, Bioulac B, Tison F (2002) A ‘Single toxin-double lesion’ rat model of striatonigral degeneration by intrastriatal 1-Methyl-4-phenyl pyridinium ion injection: a motor behavioural analysis

    Google Scholar 

  18. Heikkila R E, Manzino L, Cabbat F S, Duvoisin R C (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311, 467–469

    Article  PubMed  CAS  Google Scholar 

  19. Heikkila R E (1985) Differential neurotoxi­city of 1-methyl-4-phenyl-1,2,3,6-tetrahyd­ropyridine (MPTP) in Swiss-Webster mice from different sources. Eur J Pharmacol 117, 131–133

    Article  PubMed  CAS  Google Scholar 

  20. Costall B, Naylor R J (1975) A comparison of circling models for the detection of antiparkinson activity. Psychopharmacologia 41, 57–64

    Article  PubMed  CAS  Google Scholar 

  21. Wenning G K, Granata R, Laboyrie P M, Quinn N P, Jenner P, Marsden C D (1996) Reversal of behavioural abnormalities by fetal allografts in a novel rat model of striatonigral degeneration. Mov Disord 11, 522–532

    Article  PubMed  CAS  Google Scholar 

  22. Storey E, Hyman B T, Jenkins B, Brouillet E, Miller J M, Rosen B R, Beal M F (1992) 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J Neurochem 58, 1975–1978

    Article  PubMed  CAS  Google Scholar 

  23. Bradbury A J, Costall B, Domeney A M, Jenner P, Kelly M E, Marsden C D, Naylor R J (1986) 1-methyl-4-phenylpyridine is neurotoxic to the nigrostriatal dopamine pathway. Nature 319, 56–57

    Article  PubMed  CAS  Google Scholar 

  24. Alexi, T, Hughes P E, Faull R L, Williams C E (1998) 3-Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration. Neuroreport 9, R57-64

    Article  PubMed  CAS  Google Scholar 

  25. Borlongan C V, Koutouzis T K, Freeman T B, Cahill D W, Sanberg P R (1995) Behavioral pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington’s disease. Brain Res 697, 254–257

    Article  PubMed  CAS  Google Scholar 

  26. Borlongan C V, Koutouzis T K, Randall T S, Freeman T B, Cahill D W, Sanberg P R (1995) Systemic 3-nitropropionic acid: behavioral deficits and striatal damage in adult rats. Brain Res Bull 36, 549–556

    Article  PubMed  CAS  Google Scholar 

  27. Waldner R, Puschban Z, Scherfler C, Seppi K, Jellinger K, Poewe W, Wenning G K (2001) No functional effects of embryonic neuronal grafts on motor deficits in a 3-nitropropionic acid rat model of advanced striatonigral degeneration (multiple system atrophy). Neuroscience 102, 581–592

    Article  PubMed  CAS  Google Scholar 

  28. Nakao N, Brundin P (1997) Effects of alpha-phenyl-tert-butyl nitrone on neuronal survival and motor function following intrastriatal injections of quinolinate or 3-nitropropionic acid. Neuroscience 76, 749–761

    Article  PubMed  CAS  Google Scholar 

  29. Scherfler C, Puschban Z, Ghorayeb I, Goebel G P, Tison F, Jellinger K, Poewe W, Wenning G K (2000) Complex motor disturbances in a sequential double lesion rat model of striatonigral degeneration (multiple system atrophy). Neuroscience 99, 43–54

    Article  PubMed  CAS  Google Scholar 

  30. Fricker R. A, Annett L E, Torres E M, Dunnett S B (1996) The placement of a striatal ibotenic acid lesion affects skilled forelimb use and the direction of drug-induced rotation. Brain Res Bull 41, 409–416

    Article  PubMed  CAS  Google Scholar 

  31. Puschban Z, Scherfler C, Granata R, Laboyrie P, Quinn N P, Jenner P, Poewe W, Wenning G K (2000) Autoradiographic study of striatal dopamine re-uptake sites and dopamine D1 and D2 receptors in a 6-hydroxydopamine and quinolinic acid double-lesion rat model of striatonigral degeneration (multiple system atrophy) and effects of embryonic ventral mesencephalic, striatal or co-grafts. Neuroscience 95, 377–388

    Article  PubMed  CAS  Google Scholar 

  32. Wenning G K, Tison F, Scherfler C, Puschban Z, Waldner R, Granata R, Ghorayeb I, Poewe W (2000) Towards neurotransplantation in multiple system atrophy: clinical rationale, pathophysiological basis, and preliminary experimental evidence. Cell Transplant 9, 279–288

    PubMed  CAS  Google Scholar 

  33. Schwarting R K, Huston J P (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50, 275–331

    Article  PubMed  CAS  Google Scholar 

  34. Kollensperger M, Stefanova N, Reindl M, Poewe W, Wenning G K (2007) Loss of dopaminergic responsiveness in a double lesion rat model of the Parkinson variant of multiple system atrophy. Mov Disord 22, 353–358

    Article  PubMed  Google Scholar 

  35. Ghorayeb I, Puschban Z, Fernagut P O, Scherfler C, Rouland R, Wenning G K, Tison F (2001) Simultaneous intrastriatal 6-hydroxydopamine and quinolinic acid injection: a model of early-stage striatonigral degeneration. Exp Neurol 167, 133–147

    Article  PubMed  CAS  Google Scholar 

  36. Venero J L, Romero-Ramos M, Revuelta M, Machado A, Cano J (1995) Intrastriatal quinolinic acid injections protect against 6-hydroxydopamine-induced lesions of the dopaminergic nigrostriatal system. Brain Res 672, 153–158

    Article  PubMed  CAS  Google Scholar 

  37. Teismann P, Tieu K, Cohen O, Choi D K, Wu D C, Mark, D, Vila M, Jackson-Lewis V, Przedborski S (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 18, 121–129

    Article  PubMed  Google Scholar 

  38. Kollensperger M, Stefanova N, Pallua A, Puschban Z, Dechant G, Hainzer M., Reindl, M, Poewe W, Nikkhah G, Wenning G K (2009) Striatal transplantation in a rodent model of multiple system atrophy: effects on L-Dopa response. J Neurosci Res 87, 1679–1685

    Article  PubMed  Google Scholar 

  39. Stefanova N, Mitschnigg M, Ghorayeb I, Diguet E, Geser F, Tison F, Poewe W, Wenning G K (2004) Failure of neuronal protection by inhibition of glial activation in a rat model of striatonigral degeneration. J Neurosci Res 78, 87–91

    Article  PubMed  CAS  Google Scholar 

  40. Wu D C, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi D K, Ischiropoulos, H., Przedborski, S. (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22, 1763–1771

    PubMed  CAS  Google Scholar 

  41. Scherfler C, Sather T, Diguet E, Stefanova N, Puschban Z, Tison F, Poewe W, Wenning G K (2005) Riluzole improves motor deficits and attenuates loss of striatal neurons in a sequential double lesion rat model of striatonigral degeneration (parkinson variant of multiple system atrophy). J Neural Transm 112, 1025–1033

    Article  PubMed  CAS  Google Scholar 

  42. Kume A, Takahashi A, Hashizume Y (1993) Neuronal cell loss of the striatonigral system in multiple system atrophy. J Neurol Sci 117, 33–40

    Article  PubMed  CAS  Google Scholar 

  43. Fearnley J M, Lees A J (1990) Striatonigral degeneration. A clinicopathological study. Brain 113 ( Pt 6), 1823–1842

    Google Scholar 

  44. Tison F, Wenning G K, Daniel S E, Quinn N P (1995) [Multiple system atrophy with Lewy bodies]. Rev Neurol (Paris) 151, 398–403

    CAS  Google Scholar 

  45. Chang J W, Wachtel S R, Young D, Kang U J (1999) Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson’s disease: studies on medial forebrain bundle and striatal lesions. Neuroscience 88, 617–628

    Article  PubMed  CAS  Google Scholar 

  46. Cousins M S, Salamone J D (1996) Skilled motor deficits in rats induced by ventrolateral striatal dopamine depletions: behavioral and pharmacological characterization. Brain Res 732, 186–194

    Article  PubMed  CAS  Google Scholar 

  47. Dunnett S B, Iversen S D (1982) Sensorimotor impairments following localized kainic acid and 6-hydroxydopamine lesions of the neostriatum. Brain Res 248, 121–127

    Article  PubMed  CAS  Google Scholar 

  48. Kirik D, Rosenblad C, Björklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152, 259–277

    Article  PubMed  CAS  Google Scholar 

  49. Barker R, Dunnett S B (1994) Ibotenic acid lesions of the striatum reduce drug-induced rotation in the 6-hydroxydopamine-lesioned rat. Exp Brain Res 101, 365–374

    Article  PubMed  CAS  Google Scholar 

  50. Friehs G M, Parker R G, He L S, Haines S J, Turner D A, Ebner T J (1991) Lesioning of the striatum reverses motor asymmetry in the 6-hydroxydopamine rodent model of parkinsonism. J Neural Transplant Plast 2, 141–156

    Article  PubMed  CAS  Google Scholar 

  51. Fernagut P O, Diguet E, Stefanova N, Biran M, Wenning G K, Canioni P, Bioulac B, Tison. (2002) Subacute systemic 3-nitropropionic acid intoxication induces a distinct motor disorder in adult C57Bl/6 mice: behavioural and histopathological characterisation. Neuroscience 114, 1005–1017

    Google Scholar 

  52. Langston J W, Ballard P, Tetrud J W, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980

    Article  PubMed  CAS  Google Scholar 

  53. Davis G C, Williams A C, Markey S P, Ebert M H, Caine E D, Reichert C M, Kopin I J (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1, 249–254

    Article  PubMed  CAS  Google Scholar 

  54. Stefanova N, Puschban Z, Fernagut P O, Brouillet E, Tison F, Reindl M, Jellinger K A, Poewe W, Wenning G K (2003) Neuropatho­logical and behavioral changes induced by various treatment paradigms with MPTP and 3-nitropropionic acid in mice: towards a model of striatonigral degeneration (multiple system atrophy). Acta Neuropathol 106, 157–166

    Article  PubMed  CAS  Google Scholar 

  55. Clemens J A, Phebus L A (1988) Dopamine depletion protects striatal neurons from ischemia-induced cell death. Life Sci 42, 707–713

    Article  PubMed  CAS  Google Scholar 

  56. Reynolds D S, Carter R J, Morton A J (1998) Dopamine modulates the susceptibility of striatal neurons to 3-nitropropionic acid in the rat model of Huntington’s disease. J Neurosci 18, 10116–10127

    PubMed  CAS  Google Scholar 

  57. Fernagut P O, Diguet E, Bioulac B, Tison F (2004) MPTP potentiates 3-nitropropionic acid-induced striatal damage in mice: reference to striatonigral degeneration. Exp Neurol 185, 47–62

    Article  PubMed  CAS  Google Scholar 

  58. Diguet E, Fernagut P O, Scherfler C, Wenning G, Tison F (2005) Effects of riluzole on combined MPTP + 3-nitropropionic acid-induced mild to moderate striatonigral degeneration in mice. J Neural Transm 112, 613–631

    Article  PubMed  CAS  Google Scholar 

  59. Park H J, Bang G, Lee B R, Kim H O, Lee P H (2010) Neuroprotective effect of human mesenchymal stem cells in an animal model of double toxin-induced multiple system atrophy-parkinsonism. Cell Transplant doi: 10.3727/096368910X540630

  60. Ghorayeb I, Fernagut P O, Aubert I, Bezard E, Poewe W, Wenning G K, Tison F (2000) Toward a primate model of L-dopa-unresponsive parkinsonism mimicking striatonigral degeneration. Mov Disord 15, 531–536

    Article  PubMed  CAS  Google Scholar 

  61. Ghorayeb I, Fernagut P O, Stefanova N, Wenning G K, Bioulac B, Tison F (2002) Dystonia is predictive of subsequent altered dopaminergic responsiveness in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri­dine+3-nitropropionic acid model of striatonigral degeneration in monkeys. Neurosci Lett 335, 34–38

    Article  PubMed  CAS  Google Scholar 

  62. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39, 889–909

    Article  PubMed  CAS  Google Scholar 

  63. Stefanova N, Reindl M, Neumann M, Haass C, Poewe W, Kahle P J, Wenning G K (2005) Oxidative stress in transgenic mice with oligodendroglial alpha-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy. Am J Pathol 166, 869–876

    Article  PubMed  CAS  Google Scholar 

  64. Kahle P J, Neumann M, Ozmen L, Muller V, Jacobsen H, Spooren W, Fuss B, Mallon B, Macklin W B, Fujiwara H, Hasegawa M, Iwatsubo T, Kretzschmar H A, Haass C (2002) Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep 3, 583–588

    Article  PubMed  CAS  Google Scholar 

  65. Stefanova N, Poewe W, Wenning G K (2008) Rasagiline is neuroprotective in a transgenic model of multiple system atrophy. Exp Neurol 210, 421–427

    Article  PubMed  CAS  Google Scholar 

  66. Ubhi K, Lee P H, Adame A, Inglis C, Mante M, Rockenstein E, Stefanova N, Wenning G K, Masliah E (2009) Mitochondrial inhibitor 3-nitroproprionic acid enhances oxidative modification of alpha-synuclein in a transgenic mouse model of multiple system atrophy. J Neurosci Res 87, 2728–2739

    Article  PubMed  CAS  Google Scholar 

  67. Gow A, Friedrich V L Jr, Lazzarini R A (1992) Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression. J Cell Biol 119, 605–616

    Article  PubMed  CAS  Google Scholar 

  68. Ungerstedt U, Arbuthnott G W (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24, 485–493

    Article  PubMed  CAS  Google Scholar 

  69. Olsson M, Nikkhah G, Bentlage C, Björklund A (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15, 3863–3875

    PubMed  CAS  Google Scholar 

  70. Baird A L, Meldrum A, Dunnett S B (2001) The staircase test of skilled reaching in mice. Brain Res Bull 54, 243–250

    Article  PubMed  CAS  Google Scholar 

  71. Scholz SW, Houlden H, Schulte C, Sharma M, Li A, Berg D, et al. (2009) SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol, 65, 610–614

    Article  PubMed  CAS  Google Scholar 

  72. Wenning, GK, Wagner S, Daniel S, Quinn NP (1993) Multiple system atrophy: sporadic or familial? Lancet 342, 681

    Article  CAS  Google Scholar 

  73. Wullner U, Abele M, Schmitz-Huebsch T, Wilhelm K, Benecke R, Deuschl G, Klockgether T (2004) Probable multiple system atrophy in a German family. J Neurol Neurosurg Psychiatry, 75, 924–925

    Article  PubMed  CAS  Google Scholar 

  74. Al-Chalabi A, Dürr A, Wood N W, Parkinson M H, Camuzat A, Hulot J S, et al. (2009) Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS One, 4, e7114

    Article  PubMed  Google Scholar 

  75. Stefanova N, Reindl M, Neumann M, Kahle P J, Poewe W, Wenning G K (2007) Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov Disord, 22, 2196–2203

    Article  PubMed  Google Scholar 

  76. Dodel R, Spottke A, Gerhard A, Reuss A, Reinecker S, Schimke N, et al. (2010) Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial). Mov Disord. 25, 97–107

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Kuzdas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kuzdas, D., Wenning, G.K. (2011). Combination Lesion Models of MSA. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics