Skip to main content

Precise Finger Movements in Monkeys

  • Protocol
  • First Online:
Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 62))

  • 891 Accesses

Abstract

Many movement disorders interfere with skilled movements of the hand and digits, and patients give a high priority to restoration of skilled hand function. Because of both neuroanatomical and behavioural adaptations, the best available model for the study of skilled hand movements is the non-human primate, and this model may be required to study the effects of therapeutic approaches on hand function. A wide variety of different methods are available for qualitative and quantitative assessment of hand and digit function in non-human primates. These methods can document the kinematics, dynamics and functional organisation of hand and digit movements, as well as providing more direct measures of the efficiency of the hand in, for example, efficient retrieval of food rewards and the use of tools. They include the use of high speed digital video and motion analysis techniques. The techniques available are able to provide a quantitative documentation of the characteristic deficits resulting from movement disorders and other neurological diseases, and are sensitive enough to detect significant improvements in hand function due to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Napier JR. Hands. George Allen and Unwin (London) 1980.

    Google Scholar 

  2. Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 2004; 21: 1371–1383.

    Article  PubMed  Google Scholar 

  3. Lemon RN, Griffiths J. Comparing the function of the corticospinal system in different species: Organizational differences for motor specialization? Muscle Nerve 2005; 261–279.

    Google Scholar 

  4. Courtine G, Bunge MB, Fawcett JW et al. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med 2007; 13: 561–566.

    Article  PubMed  CAS  Google Scholar 

  5. Napier HR. Prehensibility and opposability in the hands of primates. Symp Zool Soc Lond 1961; 5: 115–132.

    Google Scholar 

  6. Heffner RS, Masterton RB. Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav Evol 1975; 12: 161–200.

    Article  PubMed  CAS  Google Scholar 

  7. Heffner RS, Masterton RB. The role of the ­corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol 1983; 23: 165–183.

    Article  PubMed  CAS  Google Scholar 

  8. GA, Strick PL. Corticospinal terminations in two New-World primates: Further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci 1993; 13: 5105–5118.

    Google Scholar 

  9. Lawrence DG, Kuypers HGJM. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 1968; 91: 1–14.

    Google Scholar 

  10. Porter R, Lemon RN. Corticospinal function and voluntary movement. Physiological Society Monograph. Oxford: Oxford University Press; 1993.

    Google Scholar 

  11. Lang CE, Schieber MH. Differential impairment of individuated finger movements in humans after damage to the motor cortex or the corticospinal tract. J Neurophysiol 2003; 90: 1160–1170.

    Article  PubMed  Google Scholar 

  12. Courtine G, Roy RR, Raven J et al. Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Brain 2005; 128: 2338–2358.

    Article  PubMed  Google Scholar 

  13. Nathan PW. Effects on movement of surgical incisions into the human spinal cord. Brain 1994; 117 ( Pt 2): 337–346.

    Article  PubMed  Google Scholar 

  14. Bradbury EJ, Moon LDF, Popat RJ et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002; 416: 636–640.

    Article  PubMed  CAS  Google Scholar 

  15. DG, Hopkins DA. The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections. Brain 1976; 99: 235–254.

    Google Scholar 

  16. Kilbreath SL, Gandevia SC. Limited independent flexion of the thumb and fingers in human subjects. Journal of Physiology 1994; 479: 487–497.

    PubMed  Google Scholar 

  17. Schieber MH. Muscular production of individuated finger movements: The roles of extrinsic finger muscles. J Neurosci 1995; 15: 284–297.

    PubMed  CAS  Google Scholar 

  18. Schieber MH, Santello M. Hand function: peripheral and central constraints on performance. J Appl Physiol 2004; 96: 2293–2300.

    Article  PubMed  Google Scholar 

  19. Brinkman J, Kuypers HG. Splitbrain monkeys: cerebral control of ipsilateral and contralateral arm, hand, and finger movements. Science 1972; 176: 536–539.

    Article  PubMed  CAS  Google Scholar 

  20. Brinkman J, Kuypers HG. Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey. Brain 1973; 96: 653–674.

    Article  PubMed  CAS  Google Scholar 

  21. Freund P, Schmidlin E, Wannier T et al. Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nature Medicine 2006; 12: 790–792.

    Article  PubMed  CAS  Google Scholar 

  22. Freund P, Schmidlin E, Wannier T et al. Anti-Nogo-A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates – re-examination and extension of behavioral data. Eur J Neurosci 2009; 29: 983–996.

    Article  PubMed  Google Scholar 

  23. Nudo RJ, Wise MB, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996; 272: 1791–1794.

    Article  PubMed  CAS  Google Scholar 

  24. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. Journal of Neuroscience 1996; 16: 785–807.

    PubMed  CAS  Google Scholar 

  25. Moore TL, Killiany RJ, Pessina MA, Moss MB, Rosene DL. Assessment of motor function of the hand in aged rhesus monkeys. Somatosens Mot Res 2010; 27: 121–130.

    Article  PubMed  Google Scholar 

  26. Xerri C, Merzenich MM, Jenkins W, Santucci S. Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys. Cereb Cortex 1999; 9: 264–276.

    Article  PubMed  CAS  Google Scholar 

  27. Belhaj-Saif A, Cheney PD. Plasticity in the Distribution of the Red Nucleus Output to Forearm Muscles After Unilateral Lesions of the Pyramidal Tract. J Neurophysiol 2000; 83: 3147–3153.

    PubMed  CAS  Google Scholar 

  28. Haaxma R, Kuypers H. Role of occipito-frontal cortico-cortical connections in visual guidance of relatively independent hand and finger movements in rhesus monkeys. Brain Res 1974; 71: 361–366.

    Article  PubMed  CAS  Google Scholar 

  29. Asanuma H, Arissian K. Experiments on functional role of peripheral input to motor cortex during voluntary movements in the monkey. J Neurophysiol 1984; 52: 212–227.

    PubMed  CAS  Google Scholar 

  30. Kaeser M, Brunet JF, Wyss A et al. Autologous adult cortical cell transplantation enhances functional recovery following unilateral lesion of motor cortex in primates: a pilot study. Neurosurgery 2011.

    Google Scholar 

  31. Hepp-Reymond MC, Wiesendanger M. Unilateral pyramidotomy in monkeys: effects on force and speed of a conditioned precision grip. Brain 1972; 36: 117–131.

    Article  CAS  Google Scholar 

  32. Smith AM, Hepp-Reymond MC, Wyss UR. Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of finger muscles. Exp Brain Res 1975; 23: 315–332.

    Article  PubMed  CAS  Google Scholar 

  33. Muir RB, Lemon RN. Corticospinal neurons with a special role in precision grip. Brain Res 1983; 261: 312–316.

    Article  PubMed  CAS  Google Scholar 

  34. Baker SN, Philbin N, Spinks R et al. Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes. J Neurosci Methods 1999; 94: 5–17.

    Article  PubMed  CAS  Google Scholar 

  35. Baker SN, Jackson A, Spinks R, Lemon RN. Synchronization in monkey motor cortex during a precision grip task I. Task -dependent modulation in single-unit synchrony. J Neurophysiol 2001; 85: 869–885.

    Google Scholar 

  36. Lemon RN. Cortical control of the primate hand. Exp Physiol 1993; 78: 263–301.

    PubMed  CAS  Google Scholar 

  37. Bennett KMB, Lemon RN. Corticomotoneuronal contribution to the fractionation of muscle activity during precision grip in the monkey. J Neurophysiol 1996; 75: 1826–1842.

    PubMed  CAS  Google Scholar 

  38. Darian-Smith C. Monkey models of recovery of voluntary hand movement after spinal cord and dorsal root injury. ILAR J 2007; 48: 396–410.

    PubMed  CAS  Google Scholar 

  39. Galea MP, Darian-Smith I. Postnatal maturation of the direct corticospinal projections in the macaque monkey. Cereb Cortex 1995; 5: 518–540.

    Article  PubMed  CAS  Google Scholar 

  40. Hinde RA, Rowell TE, Spencer-Booth Y. Behaviour of socially living rhesus monkeys in their first six months. Proc Zool Soc Lond 1964; 143: 609–649.

    Google Scholar 

  41. Sasaki S, Isa T, Pettersson LG et al. Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. J Neurophysiol 2004; 92: 3142–3147.

    Article  PubMed  Google Scholar 

  42. Nishimura Y, Onoe H, Morichika Y, Perfiliev S, Tsukada H, Isa T. Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science 2007; 318: 1150–1155.

    Article  PubMed  CAS  Google Scholar 

  43. RN. Cortico-motoneuronal system and dexterous finger movements. J Neurophysiol 2004; 92: 3601–3603.

    Google Scholar 

  44. Rosenzweig ES, Courtine G, Jindrich DL et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 2010; 13: 1505–1510.

    Article  PubMed  CAS  Google Scholar 

  45. Williams ER, Soteropoulos DS, Baker SN. Coherence between motor cortical activity and peripheral discontinuities during slow finger movements. J Neurophysiol 2009; 102: 1296–1309.

    Article  PubMed  Google Scholar 

  46. Schieber MH. Individuated finger movements of Rhesus monkeys: A means of quantifying the independence of the digits. J Neurophysiol 1991; 65: 1381–1391.

    PubMed  CAS  Google Scholar 

  47. Taira M, Mine S, Georgopoulos AP, Murata A, Sakata H. Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 1990; 83: 29–36.

    Article  PubMed  CAS  Google Scholar 

  48. Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G. Object representation in the ventral premotor cortex (Area F5) of the monkey. J Neurophysiol 1997; 78: 2226–2230.

    PubMed  CAS  Google Scholar 

  49. Umilta MA, Brochier TG, Spinks RL, Lemon RN. Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp. J Neurophysiol 2007; 98: 488–501.

    Article  PubMed  CAS  Google Scholar 

  50. Johansson RS, Westling G. Coordinated ­isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research 1988; 71: 59–71.

    CAS  Google Scholar 

  51. Brochier T, Spinks RL, Umilta MA, Lemon RN. Patterns of muscle activity underlying object-specific grasp by the macaque monkey. J Neurophysiol 2004; 92: 1770–1782.

    Article  PubMed  CAS  Google Scholar 

  52. Ro JY, Debowy D, Lu S, Ghosh S, Gardner EP. Digital video: a tool for correlating neuronal firing patterns with hand motor behavior. J Neurosci Meth 1998; 82: 215–231.

    Article  CAS  Google Scholar 

  53. Gardner EP, Babu KS, Reitzen SD et al. Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors. J Neurophysiol 2007; 97: 387–406.

    Google Scholar 

  54. Roy AC, Paulignan Y, Meunier M, Boussaoud D. Prehension movements in the macaque monkey: effects of object size and location. J Neurophysiol 2002; 88: 1491–1499.

    PubMed  Google Scholar 

  55. Jerde TE, Soechting JF, Flanders M. Biological constraints simplify the recognition of hand shapes. IEEE Trans Biomed Eng 2003; 50: 265–269.

    Article  PubMed  Google Scholar 

  56. Grinyagin IV, Biryukova EV, Maier MA. Kinematic and dynamic synergies of human precision-grip movements. J Neurophysiol 2005; 94: 2284–2294.

    Article  PubMed  CAS  Google Scholar 

  57. Warden CJ, Koch AM, Fjeld H.A. Instrumentation in Cebus and Rhesus monkeys. 1940. p. 297–310.

    Google Scholar 

  58. Iriki A, Tanaka M, Iwanura Y. Coding of modified body schema during tool use by macaque postcentral neurones. NeuroReport 1996; 7: 2325–2330.

    Article  PubMed  CAS  Google Scholar 

  59. Hihara S, Obayashi S, Tanaka M, Iriki A. Rapid learning of sequential tool use by macaque monkeys. Physiology & Behavior 2003; 78: 427–434.

    Article  CAS  Google Scholar 

  60. Hihara S, Notoya T, Tanaka M et al. Extension of corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys. Neuropsychologia 2006; 44: 2636–2646.

    Article  PubMed  Google Scholar 

  61. Quallo MM, Price CJ, Ueno K et al. Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc Natl Acad Sci USA 2009; 106: 18379–18384.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Lemon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lemon, R. (2011). Precise Finger Movements in Monkeys. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics