Skip to main content

Assessing Spinal Cord Injury

  • Protocol
  • First Online:
Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 62))

  • 879 Accesses

Abstract

Functional recovery is the ultimate goal of research into experimental therapy for spinal cord injury (SCI). The effective use of animal models of SCI requires functional assessment methods that can be reliably repeated in different laboratories. The aim of this chapter is to describe some key features of behavioural methodology which inform our laboratory’s decisions regarding appropriate assessments in rat models of SCI. These include recognition of the type of data being measured, assurance of appropriate sampling methods to improve reliability, and considerations of the animals’ motivation during completion of the behavioural tasks. We then illustrate these principles with methods used in our laboratory, a major emphasis of which has been biomechanical analysis of limb action during overground locomotion. We also describe analysis of skilled limb movements during more challenging tasks such as ladder locomotion and forelimb pellet retrieval. Our focus throughout is on objective quantitative assessment of movement that can be reliably used to assess functional capabilities in rat SCI models under different lesion or treatment conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sedy J, Urdzikova L, Jendelova P, Sykova E (2008) Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev 32:550–580

    Article  PubMed  Google Scholar 

  2. Muir GD, Webb AA (2000) Mini-review: assessment of behavioural recovery following spinal cord injury in rats. Eur J Neurosci 12:3079–3086

    Article  PubMed  CAS  Google Scholar 

  3. Goldberger ME, Bregman BS, Vierck-CJ J, Brown M (1990) Criteria for assessing recovery of function after spinal cord injury: behavioral methods. Exp Neurol 107:113–117

    Article  PubMed  CAS  Google Scholar 

  4. Kunkel BE, Dai HN, Bregman BS (1993) Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp Neurol 119:153–164

    Article  Google Scholar 

  5. Wrathall JR (1992) Behavioral endpoint measures for preclinical trials using experimental models of spinal cord injury. J Neurotrauma 9:165–167

    Article  PubMed  CAS  Google Scholar 

  6. Basso DM (2004) Behavioral testing after spinal cord injury: congruities, complexities, and controversies. J Neurotrauma 21:395–404

    Article  PubMed  Google Scholar 

  7. Sharp KG, Flanagan L, Yee KM, Steward O (2011) A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats. Exp Neurol in press

    Google Scholar 

  8. Webb AA, Muir GD (2005) Sensorimotor behaviour following incomplete cervical spinal cord injury in the rat. Behav Brain Res 165:147–159

    Article  PubMed  Google Scholar 

  9. Cheng H, Almstrom S, Gimenez LL, Chang R, Ove OS, Hoffer B, Olson L (1997) Gait analysis of adult paraplegic rats after spinal cord repair. Exp Neurol 148:544–557

    Article  PubMed  CAS  Google Scholar 

  10. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  PubMed  CAS  Google Scholar 

  11. Kanagal SG, Muir GD (2008) The differential effects of cervical and thoracic dorsal funiculus lesions in rats. Behav Brain Res 187:379–386

    Article  PubMed  Google Scholar 

  12. Webb AA, Muir GD (2002) Compensatory locomotor adjustments of rats with cervical or thoracic spinal cord hemisections. J Neurotrauma 19:239–256

    Article  PubMed  Google Scholar 

  13. Sandrow-Feinberg HR, Zhukareva V, Santi L, Miller K, Shumsky JS, Baker DP, Houle JD (2010) PEGylated interferon-beta modulates the acute inflammatory response and recovery when combined with forced exercise following cervical spinal contusion injury. Exp Neurol 223:439–451

    Article  PubMed  CAS  Google Scholar 

  14. Martinez M, Brezun JM, Bonnier L, Xerri C (2009) A new rating scale for open-field evaluation of behavioral recovery after cervical spinal cord injury in rats. J Neurotrauma 26:1043–1053

    Article  PubMed  Google Scholar 

  15. Anderson KD, Sharp KG, Hofstadter M, Irvine KA, Murray M, Steward O (2009) Forelimb locomotor assessment scale (FLAS): novel assessment of forelimb dysfunction after cervical spinal cord injury. Exp Neurol 220:23–33

    Article  PubMed  Google Scholar 

  16. Timoszyk WK, Nessler JA, Acosta C, Roy RR, Edgerton VR, Reinkensmeyer DJ, de LR (2005) Hindlimb loading determines stepping quantity and quality following spinal cord transection. Brain Res 1050:180–189

    Google Scholar 

  17. Cha J, Heng C, Reinkensmeyer DJ, Roy RR, Edgerton VR, de Leon RD (2007) Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. J Neurotrauma 24:1000–1012

    Article  PubMed  Google Scholar 

  18. Magnuson DS, Smith RR, Brown EH, Enzmann G, Angeli C, Quesada PM, Burke D (2009) Swimming as a model of task-specific locomotor retraining after spinal cord injury in the rat. Neurorehabil Neural Repair 23:535–545

    Article  PubMed  Google Scholar 

  19. Smith RR, Brown EH, Shum-Siu A, Whelan A, Burke DA, Benton RL, Magnuson DS (2009) Swim training initiated acutely after spinal cord injury is ineffective and induces extravasation in and around the epicenter. J Neurotrauma 26:1017–1027

    Article  PubMed  Google Scholar 

  20. Smith RR, Shum-Siu A, Baltzley R, Bunger M, Baldini A, Burke DA, Magnuson DS (2006) Effects of swimming on functional recovery after incomplete spinal cord injury in rats. J Neurotrauma 23:908–919

    Article  PubMed  Google Scholar 

  21. Webb AA, Muir GD (2003) Unilateral dorsal column and rubrospinal tract injuries affect overground locomotion in the unrestrained rat. Eur J Neurosci 18:412–422

    Article  PubMed  Google Scholar 

  22. Muir GD, Webb AA, Kanagal S, Taylor L (2007) Dorsolateral cervical spinal injury differentially affects forelimb and hindlimb action in rats. Eur J Neurosci 25:1501–1510

    Article  PubMed  Google Scholar 

  23. Kanagal SG, Muir GD (2008) Effects of combined dorsolateral and dorsal funicular lesions on sensorimotor behaviour in rats. Exp Neurol 214:229–239

    Article  PubMed  Google Scholar 

  24. Kanagal SG, Muir GD (2009) Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats. Exp Neurol 216:193–206

    Article  PubMed  Google Scholar 

  25. Martin P, Bateson P (2007) Measuring Behaviour, an introductory guide. Cambridge University Press, Cambridge, UK

    Google Scholar 

  26. Kerlinger FN (1986) Foundations of Behavioral Research. Holt, Rinehart and Winston, Inc., New York

    Google Scholar 

  27. Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115:169–179

    Article  PubMed  Google Scholar 

  28. Metz GA, Whishaw IQ (2009) The ladder rung walking task: a scoring system and its practical application. J Vis Exp

    Google Scholar 

  29. Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, Holford TR, Hsu CY, Noble LJ, Nockels R, Perot PL, Salzman SK, Young W (1996) MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma 13:343–359

    CAS  Google Scholar 

  30. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  PubMed  CAS  Google Scholar 

  31. Whishaw IQ, Pellis SM (1990) The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component. Behav Brain Res 41:49–59

    Article  PubMed  CAS  Google Scholar 

  32. McKenna JE, Whishaw IQ (1999) Complete compensation in skilled reaching success with associated impairments in limb synergies, after dorsal column lesion in the rat. J Neurosci 19:1885–1894

    PubMed  CAS  Google Scholar 

  33. Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55:247–304

    Article  PubMed  CAS  Google Scholar 

  34. Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261

    Article  PubMed  CAS  Google Scholar 

  35. Armstrong DM (1986) Supraspinal contributions to the initiation and control of locomotion in the cat. Prog Neurobiol 26:273–361

    Article  PubMed  CAS  Google Scholar 

  36. Muir GD, Whishaw IQ (2000) Red nucleus lesions impair overground locomotion in rats: a kinetic analysis. Eur J Neurosci 12:1113–1122

    Article  PubMed  CAS  Google Scholar 

  37. Muir GD, Whishaw IQ (1999) Ground reaction forces in locomoting hemi-parkinsonian rats: a definitive test for impairments and compensations. Exp Brain Res 126:307–314

    Article  PubMed  CAS  Google Scholar 

  38. Kanagal SG, Muir GD (2007) Bilateral dorsal funicular lesions alter sensorimotor behaviour in rats. Exp Neurol 205:513–524

    Article  PubMed  Google Scholar 

  39. Webb AA, Muir GD (2004) Course of motor recovery following ventrolateral spinal cord injury in the rat. Behav Brain Res 155:55–65

    Article  PubMed  Google Scholar 

  40. Winter DA (1990) Biomechanics and Motor Control of Human Movement. John Wiley and Sons, Inc, New York

    Google Scholar 

  41. Biewener AA, Full RJ (1992) Force platform and kinematic analysis. In: Biewener AA (ed) Biomechanics: Structures and Systems. Oxford University Press, Oxford, pp 45–73

    Google Scholar 

  42. Couto PA, Filipe VM, Magalhaes LG, Pereira JE, Costa LM, Melo-Pinto P, Bulas-Cruz J, Mauricio AC, Geuna S, Varejao AS (2008) A comparison of two-dimensional and three-dimensional techniques for the determination of hindlimb kinematics during treadmill locomotion in rats following spinal cord injury. J Neurosci Methods 173:193–200

    Article  PubMed  Google Scholar 

  43. Fischer MS, Schilling N, Schmidt M, Haarhaus D, Witte H (2002) Basic limb kinematics of small therian mammals. J Exp Biol 205:1315–1338

    PubMed  Google Scholar 

  44. Pereira JE, Cabrita AM, Filipe VM, Bulas-Cruz J, Couto PA, Melo-Pinto P, Costa LM, Geuna S, Mauricio AC, Varejao AS (2006) A comparison analysis of hindlimb kinematics during overground and treadmill locomotion in rats. Behav Brain Res 172:212–218

    Article  PubMed  Google Scholar 

  45. Thota AK, Watson SC, Knapp E, Thompson B, Jung R (2005) Neuromechanical control of locomotion in the rat. J Neurotrauma 22:442–465

    Article  PubMed  Google Scholar 

  46. Johnson WL, Jindrich DL, Roy RR, Reggie E, V (2008) A three-dimensional model of the rat hindlimb: musculoskeletal geometry and muscle moment arms. J Biomech 41:610–619

    Google Scholar 

  47. Wehner T, Wolfram U, Henzler T, Niemeyer F, Claes L, Simon U (2010) Internal forces and moments in the femur of the rat during gait. J Biomech 43:2473–2479

    Article  PubMed  Google Scholar 

  48. Soblosky JS, Colgin LL, Chorney-Lane D, Davidson JF, Carey ME (1997) Ladder beam and camera video recording system for evaluating forelimb and hindlimb deficits after sensorimotor cortex injury in rats. J Neurosci Methods 78:75–83

    Article  PubMed  CAS  Google Scholar 

  49. Jeffery ND, Blakemore WF (1997) Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 120 (Pt 1):27–37

    Article  PubMed  Google Scholar 

  50. Schallert T, Woodlee MT (2005) Orienting and Placing. In: Whishaw IQ, Kolb B (eds) The behavior of the laboratory rat: a handbook with tests. Oxford University Press, Oxford, pp 129–140

    Google Scholar 

  51. IQ, O’Connor WT, Dunnett SB (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109 (Pt 5):805–843

    Google Scholar 

  52. Whishaw IQ, Pellis SM, Gorny BP (1992) Skilled reaching in rats and humans: evidence for parallel development or homology. Behav Brain Res 47:59–70

    Article  PubMed  CAS  Google Scholar 

  53. Soblosky JS, Song JH, Dinh DH (2001) Graded unilateral cervical spinal cord injury in the rat: evaluation of forelimb recovery and histological effects. Behav Brain Res 119:1–13

    Article  PubMed  CAS  Google Scholar 

  54. Schrimsher GW, Reier PJ (1992) Forelimb motor performance following cervical spinal cord contusion injury in the rat. Exp Neurol 117:287–298

    Article  PubMed  CAS  Google Scholar 

  55. Schrimsher GW, Reier PJ (1993) Forelimb motor performance following dorsal column, dorsolateral funiculi, or ventrolateral funiculi lesions of the cervical spinal cord in the rat. Exp Neurol 120:264–276

    Article  PubMed  CAS  Google Scholar 

  56. Whishaw IQ, Gorny B, Sarna J (1998) Paw and limb use in skilled and spontaneous reaching after pyramidal tract, red nucleus and combined lesions in the rat: behavioral and anatomical dissociations. Behav Brain Res 93:167–183

    Article  PubMed  CAS  Google Scholar 

  57. Whishaw IQ, Whishaw P, Gorny B (2008) The structure of skilled forelimb reaching in the rat: a movement rating scale. J Vis Exp

    Google Scholar 

  58. Diener PS, Bregman BS (1998) Fetal spinal cord transplants support the development of target reaching and coordinated postural adjustments after neonatal cervical spinal cord injury. J Neurosci 18:763–778

    PubMed  CAS  Google Scholar 

  59. Metz GA, Whishaw IQ (2000) Skilled reaching an action pattern: stability in rat (Rattus norvegicus) grasping movements as a function of changing food pellet size. Behav Brain Res 116:111–122

    Article  PubMed  CAS  Google Scholar 

  60. Miklyaeva EI, Whishaw IQ (1996) Hemi-Parkinson analogue rats display active support in good limbs versus passive support in bad limbs on a skilled reaching task of variable height. Behav Neurosci 110:117–125

    Article  PubMed  CAS  Google Scholar 

  61. Miklyaeva EI, Castaneda E, Whishaw IQ (1994) Skilled reaching deficits in unilateral dopamine-depleted rats: impairments in movement and posture and compensatory adjustments. J Neurosci 14:7148–7158

    PubMed  CAS  Google Scholar 

  62. Whishaw IQ (2005) Prehension. In: Whishaw IQ, Kolb B (eds) The behavior of the laboratory rat; a handbook with tests. Oxford University Press, Oxford, pp 162–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian D. Muir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Muir, G.D., Prosser-Loose, E.J. (2011). Assessing Spinal Cord Injury. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics