Skip to main content

Cerebellar Control of Fine Motor Function

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 62))

Abstract

The cerebellum is a brain region that is fundamental in controlling movement. However, because ­dysfunction anywhere within the motor system, from the cortex to the muscle, will result in abnormal movement, examining cerebellar motor control requires a combination of tests which evaluate different aspects of this structure. First we describe tests of dynamic postural reflexes for the vestibulo-cerebellum – righting reflex and vestibular drop. These are followed by tests of quadruped locomotion – from simple foot print ­analysis, through crossing a narrow bridge, to complex coordination for manoeuvring along a wire. More detailed analysis of the cortico-nuclear circuit is made using gait synchronisation on the rotarod and finally motor learning.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ito M (1993) New concepts in cerebellar function. Revue Neurologique 149:596–599

    PubMed  CAS  Google Scholar 

  2. Altman J, Bayer SA (1996) Development of the cerebellar system in relation to its evolution, structure and functions. CRC Press, Boca Raton, New York, London, Tokyo

    Google Scholar 

  3. Hirano T (2006) Motor control mechanism by the cerebellum. Cerebellum 5:296–300

    Article  PubMed  Google Scholar 

  4. Molinari M, Petrosini L, Gremoli T (1990) Hemicerebellectomy and motor behaviour in rats II. Effects of cerebellar lesion performed at different developmental stages. Exp Brain Res 82:483–492

    CAS  Google Scholar 

  5. Petrosini L, Molinari M, Gremoli T (1990) Hemicerebellectomy and motor behaviour in rats I. Development of motor function after neonatal lesion. Exp Brain Res 82:472–482

    CAS  Google Scholar 

  6. Gandhi CC, Kelly RM, Wiley RG, Walsh TJ (2000) Impaired acquisition of a Morris water maze task following selective destruction of cerebellar Purkinje cells with OX7-saporin. Behav Brain Res 109:37–47

    Article  PubMed  CAS  Google Scholar 

  7. Gasbarri A, Pompili A, Pacitti C, Cicirata F (2003) Comparative effects of lesions to the ponto-cerebellar and olivo-cerebellar pathways on motor and spatial learning in the rat. Neuro-science 116:1131–1140

    CAS  Google Scholar 

  8. Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, Petrosini L (2005) Environ­mental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 163:78–90

    Article  PubMed  Google Scholar 

  9. Federico F, Leggio MG, Neri P, Mandolesi L, Petrosini L (2006) NMDA receptor activity in learning spatial procedural strategies II. The influence of cerebellar lesions. Brain Res Bull 70:356–367

    CAS  Google Scholar 

  10. Dixon KJ, Hilber W, Speare SE, Willson ML, Bower AJ, Sherrard RM (2005) Post-lesion transcommissural olivocerebellar reinnervation improves motor function following unilateral pedunculotomy in the neonatal rat. Exp Neurol 196:254–265

    Article  PubMed  Google Scholar 

  11. Nithianantharajah J, Hannan A (2006) Enriched environments, experience dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  PubMed  CAS  Google Scholar 

  12. Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10:519–529

    Article  PubMed  CAS  Google Scholar 

  13. Ribar TJ, Rodriguiz RM, Khiroug L, Wetsel WC, Augustine GJ, Means AR (2000) Cerebellar defects in Ca2+/calmodulin kinase IV-deficient mice. J Neurosci 20:1–5

    Google Scholar 

  14. Altman J, Sudarshan K (1975) Postnatal development of locomotion in the laboratory rat. Animal Behav 23:896–920

    Article  CAS  Google Scholar 

  15. Rondi-Reig L, Delhaye-Bouchaud N, Mariani J, Caston J (1997) Role of the inferior olivary complex in motor skills and motor learning in the adult rat. Neuroscience 77:955–963

    Article  PubMed  CAS  Google Scholar 

  16. Auvray N, Caston J, Reber A, Stelz T (1989) Role of the cerebellum in the ontogenesis of the equilibrium behavior in the young rat: a behavioral study. Brain Res 505:291–301

    Article  PubMed  CAS  Google Scholar 

  17. Jones N, Stelz T, Batini C, Caston J (1995) Effects of lesion of the inferior olivary complex in learning of the equilibrium behavior in the young rat during ontogenesis. I. Total lesion of the inferior olive by 3-acetylpyridine. Brain Res 697:216–224

    Article  PubMed  CAS  Google Scholar 

  18. Caston J, Vaudano E, Stelz T, Chianale C, Delhaye-Bouchaud N, Mariani J (1995) Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of the equilibrium behaviour: studies in intact and cerebellectomised lurcher mutant mice. Dev Brain Res 86:311–316

    Article  CAS  Google Scholar 

  19. Colombel C, Lalonde R, Caston J (2002) The effects of unilateral removal of the cerebellar hemispheres on motor functions and weight gain in rats. Brain Res 950:231–238

    Article  PubMed  CAS  Google Scholar 

  20. Willson ML, McElnea C, Mariani J, Lohof AM, Sherrard RM (2008) BDNF increases homotypic olivocerebellar reinnervation and associated fine motor and cognitive skill. Brain 131:1099–1112

    Article  PubMed  Google Scholar 

  21. Burguiere E, Arleo A, Hojjati MR, Elgersma Y, De Zeeuw CI, Berthoz A, Rondi-Reig L (2005) Spatial navigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit? Nat Neurosci 8:1292–1294

    Article  PubMed  CAS  Google Scholar 

  22. Thompson RF, Steinmetz JE (2009) The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162:732–755

    Article  PubMed  CAS  Google Scholar 

  23. Dahhaoui M, Caston J, Lannou J, Avenel S (1992) Role of the cerebellum in habituation exploration behaviour in the rat. Phys Behav 52:339–344

    Article  CAS  Google Scholar 

  24. Rondi-Reig L, Le Marec N, Caston J, Mariani J (2002) The role of climbing and parallel fibers inputs to cerebellar cortex in navigation. Behav Brain Res 132:11–18

    Article  PubMed  Google Scholar 

  25. Meignin C, Hilber P, Caston J (1999) Influence of stimulation of the olivocerebellar pathway by harmaline on spatial learning in the rat. Brain Res 824:277–283

    Article  PubMed  CAS  Google Scholar 

  26. Lalonde R, Strazielle C (2003) The effects of cerebellar damage on maze learning in animals. Cerebellum 2:300–309

    Article  PubMed  CAS  Google Scholar 

  27. Leggio MG, Neri P, Graziano A, Mandolesi L, Molinari M, Petrosini L (1999) Cerebellar contribution to spatial event processing: characterization of procedural learning. Exp Brain Res 127:1–11

    Article  PubMed  CAS  Google Scholar 

  28. Morris RG (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meths 11:47–60

    Article  CAS  Google Scholar 

  29. Caston J, Chianale C, Mariani J (2004) Spatial memory of heterozygous staggerer (Rora(+)/Rora(sg)) versus normal (Rora(+)/Rora(+)) mice during aging. Behav Gen 34:319–324

    Article  CAS  Google Scholar 

  30. Colombel C, Lalonde R, Caston J (2004) The effects of unilateral removal of the cerebellar hemispheres on spatial learning and memory in rats. Brain Res 1004:108–115

    Article  PubMed  CAS  Google Scholar 

  31. Dahhaoui M, Lannou J, Stelz T, Caston J, Guastavino JM (1992) Role of the cerebellum in spatial orientation in the rat. Behav Neural Biol 58:180–189

    Article  PubMed  CAS  Google Scholar 

  32. Hilber P, Jouen F, Delhaye-Bouchaud N, Mariani J, Caston J (1998) Differential roles of cerebellar cortex and deep cerebellar nuclei in learning and retention of a spatial task: studies in intact and cerebellectomized lurcher mutant mice. Behav Genet 28:299–308

    Article  PubMed  CAS  Google Scholar 

  33. Willson ML, Bower AJ, Sherrard RM (2007) Developmental neural plasticity and its cognitive benefits: olivocerebellar reinnervation compensates spatial function in the cerebellum. Eur J Neurosci 25:1475–1483

    Article  PubMed  Google Scholar 

  34. Day LB, Weisend M, Sutherland RJ, Schallert T (1999) The hippocampus is not necessary for a place response but may be necessary for pliancy. Behav Neurosci 193:914–924

    Article  Google Scholar 

  35. Hoh TE, Cain DP (1997) Fractionating the nonspatial pretraining effect in the water maze task. Behav Neurosci 111:1285–1291

    Article  PubMed  CAS  Google Scholar 

  36. Cendelin J, Voller J, Vozeh F (2010) Ataxic gait analysis in a mouse model of the olivocerebellar degeneration. Behav Brain Res 210:8–15

    Article  PubMed  Google Scholar 

  37. Chen X, Kovalchuk Y, Adelsberger H, Henning HA, Sausbier M, Wietzorrek G, Ruth P, Yarom Y, Konnerth A (2010) Disruption of the olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels. Proc Natl Acad Sci USA 107:12323–12328

    Article  PubMed  CAS  Google Scholar 

  38. Joyal CC, Meyer C, Jacquart G, Mahler P, Caston J, Lalonde R (1996) Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation. Brain Res 739:1–11

    Article  PubMed  CAS  Google Scholar 

  39. Martin LA, Goldowitz D, Mittleman G (2003) The cerebellum and spatial ability: dissection of motor and cognitive components with a mouse model system. Eur J Neurosci 18:2002–2010

    Article  PubMed  Google Scholar 

  40. Le Marec N, Dahhaoui M, Stelz T, Bakalian A, Delhaye-Bouchaud N, Caston J, Mariani J (1997) Effect of cerebellar granule cell depletion on spatial learning and memory and in an avoidance conditioning task - studies in postnatally x-irradiated rats. Dev Brain Res 99:20–28

    Article  Google Scholar 

  41. Graziano A, Leggio MG, Mandolesi L, Neri P, Molinari M, Petrosini L (2002) Learning power of single behavioral units in acquisition of a complex spatial behavior: An observational learning study in cerebellar-lesioned rats. Behav Neurosci 116:116–125

    Article  PubMed  CAS  Google Scholar 

  42. Leggio MG, Molinari M, Neri P, Graziano A, Mandolesi L, Petrosini L (2000) Representa-tion of actions in rats: The role of cerebellum in learning spatial performances by observation. Proc Natl Acad Sci USA 97:2320–2325

    Article  PubMed  CAS  Google Scholar 

  43. Torriero S, Oliveri M, Koch G, Lo Gerfo E, Salerno S, Ferlazzo F, Caltagirone C, Petrosini L (2011) Changes in Cerebello-motor Connectivity during Procedural Learning by Actual Execution and Observation. J Cog Neurosci 23:338–348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel M. Sherrard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sherrard, R.M. (2011). Cerebellar Control of Fine Motor Function. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics