Skip to main content

Genetic Models of Cerebellar Dysfunction

  • Protocol
  • First Online:
Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 62))

  • 873 Accesses

Abstract

Mice with spontaneous mutations or with genetic modifications serve as models of spinocerebellar atrophy (SCA) and Friedreich’s ataxia. ATXN1, ATXN2, ATXN3, and ATXN7 transgenic mice mimic SCA1, SCA2, SCA3, and SCA7, respectively, while Spnb3 and Atxn8os null mutants mimic SCA5 and SCA8, respectively, with age-related onset of cerebellar pathology and motor-coordination deficits. The onset in spontaneous mutations generally occurs prior to or during the weaning period, providing information on the consequences of cerebellar lesions throughout the animal’s lifetime. Prevalent tests to screen cerebellar dysfunction include the stationary beam, suspended wire, inclined grid, rotorod, exploratory activity, and spatial orientation. Cartographies of regional metabolism and neurotransmitter uptake sites and receptors provide valuable insight into the functional impact of cerebellar lesions throughout the brain and their relation with behavioral deficits, to facilitate pharmacotherapies aimed at mitigating symptoms of cerebellar-­related degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klockgether T, Evert B (1998) Genes involved in hereditary ataxias. Trends Neurosci 21:413–418

    PubMed  CAS  Google Scholar 

  2. Koeppen AH (1998) The hereditary ataxias. J Neuropathol Exp Neurol 57:531–543

    PubMed  CAS  Google Scholar 

  3. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    PubMed  CAS  Google Scholar 

  4. Delatycki MB, Camakaris J, Brooks H, Evans-Whipp T, Thorburn DR, Williamson R, Forrest SM (1999) Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia. Ann Neurol 45:673–675

    PubMed  CAS  Google Scholar 

  5. Zuo J, De Jager PI, Takahashi KA, Jiang W, Linden DJ Heintz N (1997) Neurode­generation in Lurcher mutant mice caused by mutation in the delta 2 glutamate receptor gene. Nature 388:769–773

    PubMed  CAS  Google Scholar 

  6. Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen OP (1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17:834–842

    PubMed  CAS  Google Scholar 

  7. Takayama B, Nakagawa S, Watanabe M, Mishina M, Inoue Y (1996) Developmental changes in expression and distribution of the glutamate receptor channel delta 2 subunit according to the Purkinje cell maturation. Dev Brain Res 92:147–155

    CAS  Google Scholar 

  8. Caddy KWT, Biscoe TJ (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans Roy Soc Lond (Biol) 287:167–201

    CAS  Google Scholar 

  9. Vogel MW, McInnes M, Zanjani HS, Herrup K (1991) Cerebellar Purkinje cells provide target support over a limited spatial range: evidence from Lurcher chimeric mice. Dev Brain Res 64:87–94

    CAS  Google Scholar 

  10. Wetts R, Herrup K (1982) Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice. II. Granule cell death, Brain Res 250:358–362

    PubMed  CAS  Google Scholar 

  11. Heckroth JA, Eisenman LM (1991) Olivary morphology and olivocerebellar topography in adult lurcher mutant mice. J Comp Neurol 312:641–651

    PubMed  CAS  Google Scholar 

  12. Heckroth JA (1994) Quantitative morphological analysis of the cerebellar nuclei in normal and Lurcher mutant mice. I. Morphology and cell number. J Comp Neurol 343:173–182

    CAS  Google Scholar 

  13. Lalouette A, Guénet J-L, Vriz S (1998) Hot-foot mutations affect the δ2 glutamate receptor gene and are allelic to Lurcher. Genomics 50:9–13

    PubMed  CAS  Google Scholar 

  14. Lalouette A, Lohof A, Sotelo C, Guénet J, Mariani J (2001) Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 105:443–455

    PubMed  CAS  Google Scholar 

  15. Matsuda S, Yuzaki M (2002) Mutation in hotfoot-4J mice results in retention of δ2 glutamate receptors in ER. Eur J Neurosci 16:1507–1516

    PubMed  Google Scholar 

  16. Guastavino J-M, Sotelo C, Damez-Kinselle I (1990) Hot-foot murine mutation: behavioral effects and neuroanatomical alterations. Brain Res 523:199–210

    PubMed  CAS  Google Scholar 

  17. Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, Fitzhugh W, Kusumi K, Russell LB, Mueller KL, Van Burkel V, Birren BW, Krugiyak L, Lander EE (1996) Disruption of the nuclear hormone receptor ROR in staggerer mice. Nature 379:736–739

    PubMed  CAS  Google Scholar 

  18. Doulazmi M, Frederic F, Capone F, Becker-Andre M, Delhaye-Bouchaud N, Mariani J (2001) A comparative study of Purkinje cells in two RORα gene mutant mice: staggerer and RORα −/−. Dev Brain Res 127:165–174

    Google Scholar 

  19. Steinmayr M, André E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, Daniel H, Crépel F, Mariani J, Sotelo C, Becker-André M (1998) Staggerer phenotype in retinoid-related orphan receptor α-deficient mice. Proc Natl Acad Sci USA 95:3960–3965

    PubMed  CAS  Google Scholar 

  20. Herrup K, Mullen RJ (1979) Regional variation and absence of large neurons in the cerebellum of the staggerer mouse. Brain Res 172:1–12

    PubMed  CAS  Google Scholar 

  21. Herrup K (1983) Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Dev Brain Res 11:267–274

    Google Scholar 

  22. Landis DM, Sidman RL (1978) Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol 179:831–863

    PubMed  CAS  Google Scholar 

  23. Shojaeian H, Delhaye-Bouchaud N, Mariani J (1985) Decreased number of cells in the inferior olivary nucleus of the developing staggerer mouse. Dev Brain Res 21:141–146

    Google Scholar 

  24. Blatt GJ, Eisenman LM (1985) A qualitative and quantitative light microscopic study of the inferior olivary complex in the adult staggerer mutant mouse. J Neurogenet 2:51–66

    PubMed  CAS  Google Scholar 

  25. Roffler-Tarlov S, Herrup K (1981) Quantitative examination of the deep cerebellar nuclei in the staggerer mutant mouse. Brain Res 215:49–59

    PubMed  CAS  Google Scholar 

  26. Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene. Nna1. Science 295:1904–1906

    Google Scholar 

  27. Landis SC, Mullen RJ (1978) The development and degeneration of Purkinje cells in pcd mutant mice. J Comp Neurol 177:125–144

    PubMed  CAS  Google Scholar 

  28. Mullen RJ, Eicher EM, Sidman RL (1976) Purkinje cell degeneration: a new neurological mutation in the mouse. Proc Natl Acad. Sci USA 73:208–212

    PubMed  CAS  Google Scholar 

  29. Ghetti B, Alyea CJ, Muller J (1978) Studies on the Purkinje cell degeneration (pcd) mutant mice: primary pathology and transneuronal changes. J NeuropathoL Exp Neurol 37:617

    Google Scholar 

  30. Triarhou LC, Norton J, Ghetti B (1987) Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice, Exp Brain Res 66:577–588

    PubMed  CAS  Google Scholar 

  31. Ghetti B, Norton J, Triarhou LC (1987) Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice. J Comp Neurol 260:409–422

    PubMed  CAS  Google Scholar 

  32. Triarhou LC, Ghetti B (1991) Stabilisation of neurone number in the inferior olivary complex of aged ‘Purkinje cell degeneration’ mutant mice. Acta Neuropathol 81:597–602

    PubMed  CAS  Google Scholar 

  33. Sidman RL, Green MC (1970) “Nervous”, a new mutant mouse with cerebellar disease. In: M. Sabourdy (Ed.), Les Mutants Pathologiques chez l’Animal. CNRS, Paris, pp 69–79

    Google Scholar 

  34. Sotelo C, Triller A (1979) Fate of presynaptic afferents of Purkinje cells in adult nervous mutant mice: a model to study presynaptic stabilization. Brain Res 175:11–36

    PubMed  CAS  Google Scholar 

  35. Wassef M, Sotelo C, Cholley B, Brehier A, Thomasset M (1987) Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. Dev Biol 124:379–389

    PubMed  CAS  Google Scholar 

  36. Zanjani, H, Herrup K, Mariani J (2004) Cell number in the inferior olive of nervous and leaner mutant mice. J Neurogenet 18:327–339

    PubMed  Google Scholar 

  37. Lee N-S, Jeong Y-G. Pogo: a novel spontaneous ataxic mutant mouse. Mamm Genome 8:155–162

    Google Scholar 

  38. Jeong YG, Hyun BH, Hawkes R (2000) Abnormalities in cerebellar Purkinje cells in the novel ataxic mutant, pogo. Dev Brain Res 125:61–67

    CAS  Google Scholar 

  39. D’Arcangelo G, Miao GG, Chen S-C, Soared HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723

    PubMed  Google Scholar 

  40. Hirotsune S, Takahara T, Sasaki N, Hirose K, Yoshiki A, Ohashi T, Kusakabe M, Murakami Y, Muramatsu M, Watanabe S et al (1995) The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nature Genet 10:77–83

    PubMed  CAS  Google Scholar 

  41. Goffinet AM (1983) The embryonic development of the inferior olivary complex in normal and reeler mutant mice. J Comp Neurol 219 10–24

    PubMed  CAS  Google Scholar 

  42. Heckroth JA, Goldowitz D, Eisenman LM (1989) Purkinje cell reduction in the reeler mutant mouse: a quantitative immunohistochemical study. J Comp Neurol 279:546–555

    PubMed  CAS  Google Scholar 

  43. Mariani J, Crepel F, Mikoshiba K, Changeux J-P, Sotelo C (1977) Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse. Phil Trans Roy Soc London (Biol) 281:1–28

    CAS  Google Scholar 

  44. Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9:1055–1071

    PubMed  CAS  Google Scholar 

  45. Caviness VS Jr, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1:297–326

    PubMed  Google Scholar 

  46. Blatt GJ, Eisenman LM (1985) A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol 232:117–128

    PubMed  CAS  Google Scholar 

  47. Shojaeian H, Delhaye-Bouchaud N, Mariani J (1985) Neuronal death and synapse elimination in the olivo-cerebellar system. II. Cell counts in the inferior olive of adult X-irradiated rats and weaver and reeler mice. J Comp Neurol 232:309–318

    PubMed  CAS  Google Scholar 

  48. Doyle J, Ren X, Lennon G, Stubbs L (1997) Mutations in the Cacnl1α4 calcium channel gene are associated with seizures, cerebellar degeneration, and ataxia in tottering and leaner mutant mice. Mamm Genome 8:113–120

    PubMed  CAS  Google Scholar 

  49. Mori J, (2000) Reduced volatge sensitivity of the activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). J Neurosci 20:5654–5662

    PubMed  CAS  Google Scholar 

  50. Plomp JJ, van den Maagdenberg AMJM, Kaja S (2009) The ataxic Cacna1α-mutant mouse Rolling Nagoya: an overview of neuromorphological and electrophysiological findings. Cerebellum 8:222–230

    PubMed  Google Scholar 

  51. Brown A, Bernier G, Mathieu M, Rossant J, Kothary R (1995) The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nature Genet 10:301–306

    PubMed  CAS  Google Scholar 

  52. Bernier G, Brown A, Dalpé G, De Repentigny Y, Mathieu M, Kothary R (1995) Dystonin expression in the developing nervous system predominates in the neurons that degenerate in dystonia musculorum mutant mice. Mol Cell Neurosci 6:509–520

    PubMed  CAS  Google Scholar 

  53. Duchen LW, Strich SJ (1964) Clinical and pathological studies of an hereditary neuropathy in mice (Dystonia musculorum). Brain 87:367–378

    PubMed  CAS  Google Scholar 

  54. Janota I (1972) Ultrastructural studies of an hereditary sensory neuropathy in mice (dystonia musculorum), Brain 95:529–536

    PubMed  CAS  Google Scholar 

  55. Simon D, Seznec H, Gansmuller A, Carelle N, Weber P, Metzger D, Rustin P, Koenig M, Puccio H (2004) Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J Neurosci 24:1987–1995

    PubMed  CAS  Google Scholar 

  56. Burright EN, Clark BH, Servadio A, Matilla T, Feddersen RM, Yunis WS, Duvick LA, HZoghbi HY, Orr HT (1995) SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82:937–948

    Google Scholar 

  57. Clark HB, Burright EN, Yunis WS, Larson S, Wilcox C, Hartman B, Matilla A, Zoghbi HY, Orr HT (1997) Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J Neurosci 17:7385–7395

    PubMed  CAS  Google Scholar 

  58. Serra HG, Duvick L, Zu T, Carlson K, Stevens S, Jorgensen N, Lysholm A, Burright E, Zoghbi HY, Clark HB et al (2006) RORα-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell 127:697–708

    PubMed  CAS  Google Scholar 

  59. Lorenzetti D, Watase K, Xu B, Matzuk MM, Orr HT, Zoghbi HY (2000) Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus. Hum Mol Genet 9:779–785

    PubMed  CAS  Google Scholar 

  60. Aguiar J, Fernandez J, Aguilar A, Mendoza Y, Vazquez M, Suarez J, Berlanga J, Cruz S, Guillen G, Herrera L et al (2006) Ubiquitous expression of human SCA2 gene under the regulation of the SCA2 self promoter cause specific Purkinje cell degeneration in transgenic mice. Neurosci Lett 392:202–206

    PubMed  CAS  Google Scholar 

  61. Huyn DP, Figueroa K, Hoang N, Pulst SM (2000) Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nature Genet 26:44–50

    Google Scholar 

  62. Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A (1996) Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nature Genet 13:196–202

    PubMed  CAS  Google Scholar 

  63. Cemal CK, Carroll CJ, Lawrence L, Lowrie MB, Ruddle P, Al-Mahdawi S, King RH, Pook MA, Huxley C, Chamberlain S (2002) YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet 11:1075–1094

    PubMed  CAS  Google Scholar 

  64. Goti D, Katzen SM, Mez J, Kurtis N, Kiluk J, Ben-Haïem L, Jenkins NA, Copeland NG, Kakizuka A, Sharp AH et al (2004) A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci 24:10266–10279

    PubMed  CAS  Google Scholar 

  65. Boy J, Schmidt T, Schumann U, Grasshoff U, Unser S, Holzmann C, Schmitt I, Karl T, Laccone F, Wolburg H, Ibrahim S, Riess O (2010) A transgenic mouse model of spinocerebellar ataxia type 3 resembling late disease onset and gender-specific instability of CAG repeats. Neurobiol Dis 37:284–293

    PubMed  CAS  Google Scholar 

  66. Perkins EM, Clarkson YL, Sabatier N, Longhurst DM, Millward CP, Jack J, Toraiwa J, Watanabe M, Rothstein JD, Lyndon AR et al (2010) Loss of β-III spectrin leads to Purkinje cell dysfunction recapitu­lating the behavior and neuropathology of spinocerebellar ataxia type 5 in humans. J Neurosci 30:4857–4867

    PubMed  CAS  Google Scholar 

  67. Jackson M, Song W, Liu MY, Jin L, Dykes-Hoberg M, Lin CI, Bowers WJ, Federoff HJ, Sternweis PC, Rothstein JD (2001) Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410:89–93

    PubMed  CAS  Google Scholar 

  68. Garden GA, Libby RT, Fu YH, Kinoshita Y, Huang J, Possin DE, Smith AC, Martinez RA, Fine GC, Grote SK et al (2002) Polyglutamine-expanded ataxin-7 promotes non-cell-autonomous purkinje cell degeneration and displays proteolytic cleavage in ataxic transgenic mice. J Neurosci 22:4897–4905

    PubMed  CAS  Google Scholar 

  69. Yvert G, Lindenberg KS, Picaud S, Landwehrmeyer GB, Sahel JA, Mandel JL (2000) Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum Mol Genet 9:2491–2506

    PubMed  CAS  Google Scholar 

  70. Chou AH, Chen CY, Chen SY, Chen WJ, Chen YL, Weng YS, Wang HL (2010) Polyglutamine-expanded ataxin-7 causes cerebellar dysfunction by inducing transcriptional dysregulation. Neurochem Int 56:329–339

    PubMed  CAS  Google Scholar 

  71. He Y, Zu T, Benzow KA, Orr HT, Clark HB, Koob MD (2006) Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci 26:9975–9982

    PubMed  CAS  Google Scholar 

  72. Augustin I, Betz A, Herrmann C, Jo T, Brose N (1999) Differential expression of two novel Munc13 proteins in rat brain, Biochem J 337:363–371

    PubMed  CAS  Google Scholar 

  73. Augustin I, Korte S, Rickmann M, Kretzschmar HA, Sudhof TC, Herms JW, Brose N (2001) The cerebellum-specific Munc12 isoform Munc13-3 regulates cerebellar synaptic transmission and motor learning in mice. J Neurosci 21:10–17

    PubMed  CAS  Google Scholar 

  74. Resibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study, Neurocience 46:101–134

    CAS  Google Scholar 

  75. Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Meyer M (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc NatL Acad Sci USA 94:1488–1493

    PubMed  CAS  Google Scholar 

  76. Iijima T, Ogura H, Takatsuki K, Kawahara S, Wakabayashi K, Nakayama D, Fujioka M, Kimura Y, Bernstein A, Okano HJ et al (2007) Impaired motor functions in mice lacking the RNA-binding protein Hzf. Neurosci Res 58:183–189

    PubMed  CAS  Google Scholar 

  77. Hashimoto K, Miyata M, Watanabe M, Kano M (2001) Roles of phospholipase Cβ4 in synapse elimination and plasticity in ­developing and mature cerebellum. Mol Neurobiol 23:69–82

    PubMed  CAS  Google Scholar 

  78. Lalonde R, Botez MI, Joyal CC, Caumartin M (1992) Motor deficits in Lurcher mutant mice. Physiol Behav 51:523–525

    PubMed  CAS  Google Scholar 

  79. Lalonde R, Filali M, Bensoula AN, Lestienne F (1996) Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem 65:113–120

    PubMed  CAS  Google Scholar 

  80. Deiss V, Strazielle C, Lalonde R (200O) Regional brain variations of cytochrome oxidase activity and motor coordination in staggerer mutant mice. Neuroscience 95:903–911

    Google Scholar 

  81. Lalonde R (1987) Motor abnormalities in staggerer mutant mice. Exp Brain Res 68:417–420

    PubMed  CAS  Google Scholar 

  82. Lalonde R, Strazielle C (2003) Motor coordination, exploration, and spatial learning in a natural mouse mutation (nervous) with Purkinje cell degeneration. Behav Genet 33:59–66

    PubMed  CAS  Google Scholar 

  83. Lalonde R, Hayzoun K, Derer M, Mariani J, Strazielle C (2004) Neurobehavioral evaluation of Reln rl mutant mice: correlations with cytochrome oxidase activity. Neurosci Res 49:297–305

    Google Scholar 

  84. Hyun BH, Kim MS, Choi YK, Yoon WK, Suh JG, Jeong YG, Park SK, Lee CH (2001) Mapping of the pogo gene, a new ataxic mutant from Korean wild mice, on central mouse chromosome 8. Mamm Genome 12:250–252

    PubMed  CAS  Google Scholar 

  85. Lalonde R, Joyal CC, Botez MI (1994) Exploration and motor coordination in dystonia musculorum mutant mice. Physiol Behav 56:277–280

    PubMed  CAS  Google Scholar 

  86. Lalonde R, Marchetti N, Strazielle C (2005) Primary neurologic screening and motor coordination of Dst dt-J mutant mice (dystonia musculorum) with spinocerebellar atrophy. Physiol Behav 86:46–51

    Google Scholar 

  87. Le Marec N, Lalonde R (1997) Sensorimotor learning and retention during equilibrium tests in Purkinje cell degeneration mutant mice. Brain Res 768:310–316

    PubMed  Google Scholar 

  88. Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I (2008) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 28:12713–12724

    PubMed  CAS  Google Scholar 

  89. Barski JJ, Hartmann J, Rose CR, Hoebeek F, Mörl K, Noll-Hussong M, De Zeeuw CI, Konnerth A, Meyer M (2003) Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. J Neurosci 23:3469–3477

    PubMed  CAS  Google Scholar 

  90. Takahashi E, Niimi K, Itakura C (2009) Motor coordination impairment in aged heterozygous rolling Nagoya, Cav2.1 mutant mice. Brain Res 1279:50–57

    PubMed  CAS  Google Scholar 

  91. Cendelin J, Korelusova I, Vozeh F (2008) The effect of repeated rotarod training on motor skills and spatial learning ability in Lurcher mutant mice. Behav Brain Res 189:65–74

    PubMed  Google Scholar 

  92. Alonso I, Marques JM, Sousa N, Sequeiros J, Olsson IAS, Silveira I (2008) Motor and cognitive deficits in the heterozygous leaner mouse, a Cav2.1 voltage-gated Ca2+ channel mutant. Neurobiol Aging 29:1733–1743

    PubMed  CAS  Google Scholar 

  93. Caston J, Vasseur F, Stelz T, Chianale C, Delhaye-Bouchaud N, Mariani J (1995) Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of equilibrium behavior: studies in intact and cerebellectomized control and Lurcher mutant mice. Dev Brain Res 86:311–316

    CAS  Google Scholar 

  94. Hilber P, Caston J (2001) Motor skills and motor learning in Lurcher mutant mice during aging. Neuroscience 102:615–623

    PubMed  CAS  Google Scholar 

  95. Lalonde R, Bensoula AN, Filali M (1995) Rotorod sensorimotor learning in cerebellar mutant mice. Neurosci Res 22:423–426

    PubMed  CAS  Google Scholar 

  96. Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB, Orr HT (2004) Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 24:8853–8861

    PubMed  CAS  Google Scholar 

  97. Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518

    PubMed  CAS  Google Scholar 

  98. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nature Med 10:816–820

    PubMed  CAS  Google Scholar 

  99. Vig PJ, Subramony SH, D’Souza DR, Wei J, Lopez ME (2006) Intranasal administration of IGF-I improves behavior and Purkinje cell pathology in SCA1 mice. Brain Res Bull 69:573–579

    PubMed  CAS  Google Scholar 

  100. Kaemmerer WF, Rodrigues CM, Steer CJ, Low WC (2001) Creatine-supplemented diet extends Purkinje cell survival in spinocerebellar ataxia type 1 transgenic mice but does not prevent the ataxic phenotype. Neuroscience 103:713–724

    PubMed  CAS  Google Scholar 

  101. Hashimoto K, Watanabe M, Kurihara H, Offermanns S, Jiang H, Wu Y, Jun K, Shin HS, Inoue Y, Wu D et al (2000) Climbing fiber synapse elimination during postnatal cerebellar development requires signal transduction involving Gαq and phospholipase Cβ4. Prog Brain Res 124:31–48

    PubMed  CAS  Google Scholar 

  102. Dar MS (2000) Cerebellar CB1 receptor mediation of Δ9-THC-induced motor incoordination and its potentiation by ethanol and modulation by the cerebellar adenosinergic A1 receptor in the mouse. Brain Res 864(2):186–194

    PubMed  CAS  Google Scholar 

  103. DeSanty KP, Dar MS (2001) Cannabinoid-induced motor incoordination through the cerebellar CB1 receptor in mice. Pharmacol Biochem Behav 69:251–259

    PubMed  CAS  Google Scholar 

  104. Lalonde R, Manseau M, Botez MI (1988) Spontaneous alternation and exploration in staggerer mutant mice. Behav. Brain Res 27:273–276

    PubMed  CAS  Google Scholar 

  105. Lalonde R, Lamarre Y, Smith AM, Botez MI (1986) Spontaneous alternation and habituation in Lurcher mutant mice. Brain Res 362:161–164

    PubMed  CAS  Google Scholar 

  106. Lalonde R, Manseau M, Botez MI (1987) Spontaneous alternation and habituation in Purkinje cell degeneration mutant mice. Brain Res 411:187–189

    PubMed  CAS  Google Scholar 

  107. Lalonde R, Botez MI, Boivin D (1986) Spontaneous alternation and habituation in a t-maze in nervous mutant mice. Behav Neurosci 100:350–352

    PubMed  CAS  Google Scholar 

  108. Draski LJ, Nash DJ, Gerhardt GA (1994) CNS monoamine levels and motoric behaviors in the hotfoot ataxic mutant. Brain Res 645:69–77

    PubMed  CAS  Google Scholar 

  109. Filali M, Lalonde R, Bensoula AN, Guastavino J-M, Lestienne F (1996) Spontaneous alternation, motor activity, and spatial learning in hot-foot mutant mice. J Comp Physiol A 178:101–104

    PubMed  CAS  Google Scholar 

  110. Dember WN, Fowler H. Spontaneous alternation behavior. Psychol Bull 55:412–428

    Google Scholar 

  111. Caston J, Vasseur F, Delhaye-Bouchaud N, Mariani J (1997) Delayed spontaneous alternation in intact and cerebellectomized control and Lurcher mutant mice: differential role of cerebellar cortex and deep cerebellar nuclei. Behav. Neurosci. 111:214–218

    PubMed  CAS  Google Scholar 

  112. Lalonde R, Lamarre Y, Smith AM (1988) Does the mutant mouse Lurcher have deficits in spatially oriented behaviours? Brain Res 455:24–30

    PubMed  CAS  Google Scholar 

  113. Lalonde R (1987) Exploration and spatial learning in staggerer mutant mice. J Neurogenet 4:285–292

    PubMed  CAS  Google Scholar 

  114. Bliss TV, Errington ML (1977) “Reeler” mutant mice fail to show spontaneous alternation. Brain Res 124:168–170

    PubMed  CAS  Google Scholar 

  115. Douglas RJ, Clark GM, Erway LC, Hubbard DG, Wright CG (1979) Effects of genetic vestibular defects on behavior related to spatial orientation and emotionality. J Comp Physiol Psychol 93:467–480

    PubMed  CAS  Google Scholar 

  116. Roberts, WW, Dember WN, Brodwick M (1962) Alternation and exploration in rats with hippocampal lesions. J Comp Physiol Psychol 55:695–700

    PubMed  CAS  Google Scholar 

  117. Clody DE, Carlton DL (1969) Behavioral effects of lesions of the medial septeum of rats. J Comp Physiol Psychol 67:344–351

    PubMed  CAS  Google Scholar 

  118. Divac I, Wikmark RGE, Gade A (1975) Spontaneous alternation in rats with lesions in the frontal lobes: an extesion of the frontal lobe syndrome. Physiol Psychol 3:39–42

    Google Scholar 

  119. Fortier P, Smith AM, Rossignol S (1987) Locomotor deficits in the cerebellar mutant mouse. Lurcher, Exp Brain Res 66:271–286

    PubMed  CAS  Google Scholar 

  120. Hilber P, Jouen F, Delhaye-Bouchaud N, Mariani J, Caston J (1998) Differential roles of cerebellar cortex and deep cerebellar nuclei in learning and retention of a spatial task: studies in intact and cerebellectomized Lurcher mutant mice. Behav Genet 28:299–308

    PubMed  CAS  Google Scholar 

  121. Martin LA, Goldowitz D, Mittleman G (2003) The cerebellum and spatial ability: dissection of motor and cognitive components with a mouse model system. Eur J Neurosci 18:2002–2010

    PubMed  Google Scholar 

  122. Porras-Garcia A, Cendelin AJ, Dominguez-del-Toro E, Vozeh F, Delgado-Garcia JM (2005) Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur J Neurosci 21:979–988

    PubMed  Google Scholar 

  123. Stein JF (1986) Role of the cerebellum in the visual guidance of movement. Nature 323:217–221

    PubMed  CAS  Google Scholar 

  124. Goodlett CE, Hamre KM, West JR (1992) Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav Brain Res 47:129–141

    PubMed  CAS  Google Scholar 

  125. Gandhi CC, Kelly RM, Wiley RG, Walsh TJ (2000) Impaired acquisition of a Morris water maze task following selective destruction of cerebellar Purkinje cells with OX7-saporin. Behav Brain Res 109:37–47

    PubMed  CAS  Google Scholar 

  126. Joyal CC, Strazielle C, Lalonde R (2001) Effects of dentate nucleus lesions on spatial and postural sensorimotor learning in rats. Behav. Brain Res 122:131–137

    PubMed  CAS  Google Scholar 

  127. Joyal CC, Meyer C, Jacquart G, Mahler P, Caston J, Lalonde R (1996) Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation. Brain Res 739:1–11

    PubMed  CAS  Google Scholar 

  128. Noblett KL, Swain RA (2003) Pretraining enhances recovery from visuospatial deficit following cerebellar dentate nucleus lesion. Behav Neurosci 117:785–798

    PubMed  Google Scholar 

  129. Lalonde R, Joyal CC, Côté C (1993) Swimming activity in dystonia musculorum mutant mice. Physiol Behav 54:119–120

    PubMed  CAS  Google Scholar 

  130. Wong-Riley MTT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    PubMed  CAS  Google Scholar 

  131. Vogel MW, Fan H, Sydnor J, Guidetti P (2001) Cytochrome oxidase activity is increased in +/Lc Purkinje cells destined to die. NeuroReport 12:3039–3043

    PubMed  CAS  Google Scholar 

  132. Strazielle C, Krémarik P, Ghersi-Egea J-F, Lalonde R (1998) Regional brain variations of cytochrome oxidase activity and motor coordination in Lurcher mutant mice. Exp Brain Res 121:35–45

    PubMed  CAS  Google Scholar 

  133. Krémarik P, Strazielle C, Lalonde R (1998) Regional brain variations of cytochrome oxidase activity and motor coordination in hot-foot mutant mice. Eur J Neurosci 10:2802–2809

    PubMed  Google Scholar 

  134. Ino H (2004) Immunohistochemical characterization of the orphan nuclear receptor RORα in the mouse nervous system. J Histochem Cytochem 52:311–323

    PubMed  CAS  Google Scholar 

  135. Nakagawa S, Watanabe M, Inoue Y (1997) Prominent expression of nuclear hormone receptor RORα in Purkinje cells from early development. Neurosci Res 28:177–184

    PubMed  CAS  Google Scholar 

  136. Strazielle C, Hayzoun K, Derer M, Mariani J, Lalonde R (2006) Regional brain variations of cytochrome oxidase activity in Reln rl-orl mutant mice. Journal of Neuroscience Research 83:821–831

    Google Scholar 

  137. Mikoshiba K, Kohsaka S, Takamatsu K, Aoki E, Tsukada Y (1980) Morphological and biochemical studies on the cerebral cortex from reeler mutant mice: development of cortical layers and metabolic mapping by the deoxyglucose method. J Neurochem 34:835–844

    PubMed  CAS  Google Scholar 

  138. Bishop GA, Ho RH (1985) The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res 331:195–207

    PubMed  CAS  Google Scholar 

  139. Weiss M, Pellet J (1982) Raphe-cerebellum interactions: I. Effects of Botez MI, Reader TA (1996) Regional distribution of the 5-HT innervation in the brain of normal and Lurcher mice as revealed by [3H]citalopram quantitative autoradiography. J Chem Neuroanat 10:157–171

    Google Scholar 

  140. Strazielle C, Lalonde R, Amdiss F, Botez MI, Hébert C, Reader TA (1998) Distribution of dopamine transporters in basal ganglia of cerebellar ataxic mice by [125I]RTI-121 quantitative autoradiography. Neurochem Int 32:61–68

    PubMed  CAS  Google Scholar 

  141. Le Marec N, Hébert C, Amdiss F, Botez MI, Reader TA (1998) Regional distribution of 5-HT transporters in the brain of wild type and ‘Purkinje cell degeneration’ mutant mice: a quantitative autoradiographic study with [3H]citalopram. J Chem Neuroanat 15:155–171

    PubMed  Google Scholar 

  142. Strazielle C, Lalonde R, Hébert C, Reader TA (1999) Regional brain distribution of noradrenaline uptake sites, and alpha1-, alpha2-, and beta-adrenergic receptors in PCD mutant mice: a quantitative autoradiographic study. Neuroscience 94:287–304cerebellar stimulation and harmaline adminstration on single unit activity of midbrain raphe neurons in the rat. Exp Brain Res 48:163–170

    Google Scholar 

  143. Weiss M, Pellet J (1982) Raphe-cerebellum interactions: II. Effects of midbrain raphe stimulation and harmaline adminstration on single unit activity of cerebellar cortical cells in the rat. Exp Brain Res 48:171–176

    CAS  Google Scholar 

  144. Olson L, Fuxe K (1971) On the projections of the locus coeruleus neurons: the cerebellar innervation. Brain Res 28:165–171

    PubMed  CAS  Google Scholar 

  145. Snider RS (1975) A cerebellar-ceruleus pathway. Exp Neurol 53:714–718

    Google Scholar 

  146. Snider RS, Maiti A, Snider SR (1976) Cerebellar pathways to ventral midbrain and nigra. Exp Neurol 53:714–728

    PubMed  CAS  Google Scholar 

  147. Perciavalle V, Berretta S, Rafaelle R, Projections of the intracerebellar nuclei to the ventral midbrain tegmentum in the rat. Neuroscience 29:109–119

    Google Scholar 

  148. Ikai Y, Takada M, Shinonaga Y, Mizuno N (1992) Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience 51:719–728

    PubMed  CAS  Google Scholar 

  149. Strazielle C, Lalonde R, Hébert C, Reader TA (1999) Regional brain distribution of noradrenaline uptake sites, and alpha1-, alpha2-, and beta-adrenergic receptors in PCD mutant mice: a quantitative autoradiographic stud. Neuroscience 94:287–304

    PubMed  CAS  Google Scholar 

  150. Delis F, Mitsacos A. Giompres P (2004) Dopamine receptor and transporter levels are altered in the brain of Purkinje cell degeneration mutant mice. Neuroscience 125:255–268

    Google Scholar 

  151. Efthimiopoulos S, Giompres P, Valcana T (1991) Kinetics of dopamine and noradrenaline transport in synaptosomes from cerebellum, striatum and frontal cortex of normal and reeler mutant mice. J Neurosci. Res 29:510–519

    PubMed  CAS  Google Scholar 

  152. Panagopoulos N, Matsokis NA, Valcana T (1988) Kinetic and pharmacologic characterization of dopamine binding in the mouse cerebellum and the effects of the reeler mutation. J Neurosci Res 19:122–129

    PubMed  CAS  Google Scholar 

  153. Panagopoulos N, Matsokis NA, Valcana T (1993) Cerebellar and striatal dopamine receptors: effects of reeler and weaver mutations. J Neurosci Res 35:499–506

    PubMed  CAS  Google Scholar 

  154. Singer HS, Weaver D, Tiemeyer M, Coyle JT (1983) Synaptic chemistry associated with aberrant neuronal development in the reeler mouse. J Neurochem 41:874–881

    PubMed  CAS  Google Scholar 

  155. Ase A, Strazielle C, Hébert C, Botez MI, Lalonde R, Descarries L, Reader TA (2000) The central serotonin system in dystonia musculorum mutant mice: biochemical, autoradiographic and immunocytochemical data. Synapse 37:179–193

    PubMed  CAS  Google Scholar 

  156. Strazielle C, Ase AR, Lalonde R, Reader T (2002) Biochemical and autoradiographic studies of the central noradrenergic system in dystonia musculorum mutant mice. J Chem Neuroanat 23:143–155

    PubMed  CAS  Google Scholar 

  157. Botez MI, Botez-Marquard T, Goyette K, Elie R, Pedraza O-L, Lalonde R (1996) Amantadine hydrochloride treatment in heredodegenerative ataxias: a double-blind study. J Neurol Neurosurg Psychiatry 61:259–264

    PubMed  CAS  Google Scholar 

  158. Lalonde R, Joyal CC, Guastavino J-M, Côté C, Botez MI (1993) Amantadine and ketamine-induced improvement of motor coordination in lurcher mutant mice. Rest Neurol Neurosci 5:367–370

    CAS  Google Scholar 

  159. Trouillas P, Serratrice G, Laplane D, Rascol A, Augustin P, Barroche G, Clanet M, Degos CF, Desnuelle C, Dumas R, et al (1995) Levoratory form of 5-hydroxytryptophan in Friedreich’s ataxia. Arch Neurol 52:456–460

    PubMed  CAS  Google Scholar 

  160. Trouillas P, Xie J, Adeleine P, Michel D, Vighetto A, Honnorat J, Dumas R, Nighoghossian N, Laurent B (1997) Buspirone, a 5-hydroxy-tryptamine1A agonist, is active in cerebellar ataxia: results of a double-blind drug placebo study in patients with cerebellar cortical atrophy. Arch Neurol 54:749–752

    PubMed  CAS  Google Scholar 

  161. Takei A, Hamada T, Yabe I, Sasaki H (2005) Treatment of cerebellar ataxia with 5-HT1A agonist. Cerebellum 4:211–215

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lalonde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lalonde, R., Strazielle, C. (2011). Genetic Models of Cerebellar Dysfunction. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics