Skip to main content

The Use of Commissurotomy in Studies of Interhemispheric Communication

  • Protocol
  • First Online:
  • 883 Accesses

Part of the book series: Neuromethods ((NM,volume 62))

Abstract

An overview is given of the structure and function of the mammalian cerebral commissures, with an emphasis on their role in interhemispheric communication. A major focus is placed on the use of commissurotomy as a method of selective disconnection of interhemispheric sensory-motor integration. In order for commissure section to be effective it is crucial that the sensory input is under total experimenter control. For example, in the split-brain preparation, the optic chiasma must also be sectioned as well as the corpus callosum in order to restrict the monocular visual input to a single hemisphere. Special consideration is given to differences in the commissural organisation in different species. These differences can mean that the same lesion can have different effects in various animal species. Finally, detailed surgical protocols for callosal and chiasma section are given separately for monkey, cat, rabbit, and rat. Each such surgical protocol is specifically tailored to each species’ neurosurgical vulnerabilities.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Trendelenburg W, Hartman F (1927). Zur Frage der Bewegungsstörungen nach Balkendurchtrennung an der Katze und am Affen. Zschr ges exp Med. 54: 578–533.

    Article  Google Scholar 

  2. Dandy WE (1930) Changes in our conceptions of localization of certain functions in the human brain Am J Physiol 93: 643–692

    Google Scholar 

  3. Akeleitis AJ (1944) A study of gnosis, praxis and language following section of the corpus callosum and the anterior commissure J Neurosurg 1: 94–102

    Google Scholar 

  4. Bridgman CS, Smith KU (1945) Bilateral neural integration in visual perception after section of the corpus callosum. J Comp Neurol 93:57–66

    Article  Google Scholar 

  5. Kirschbaum WR (1947) Agenesis of the corpus callosum and associated malformations J Neuropath & exp Neurol 6: 78–94

    CAS  Google Scholar 

  6. Mountcastle VB, Darien-Smith I (1968) Neural mechanisms of in somesthesia In : VB Mountcastle (Ed.) Medical Physiology, St Louis, Mosby Press

    Google Scholar 

  7. Semmes J, Mishkin M (1965) Somatosensory loss in monkeys after ipsilateral cortical ablation J Neurophysiol 28: 473–486

    CAS  Google Scholar 

  8. Azulay A, Schwartz AS (1975) The role of the dorsal funiculus of the primate in tactile discrimination Exp Neurol 46: 315–332

    CAS  Google Scholar 

  9. Wall PD (1970) The sensory and motor role of impulses travelling in the dorsal columns toward the cerebral cortex Brain 93: 505–524

    CAS  Google Scholar 

  10. Gibson JJ (1962) Observations on active touch. J Psychol 69: 477–491

    CAS  Google Scholar 

  11. Poggio GF, Mountcastle VB (1960) A study of the functional contribution of the lemniscal and spinothalamic systems to somatic ­sensibility Bull Johns Hopkins Hosp 106: 266–316

    Google Scholar 

  12. Kerr FWL (1975) The ventral spinothalamic tract and other ascending systems of the funiculus of the spinal cord. J Comp Neurol 159: 335–356

    Article  PubMed  CAS  Google Scholar 

  13. Tomasch J, Macmillan (1957) A quantitative analysis of the human anterior commissure Acta anat 30: 902–906

    CAS  Google Scholar 

  14. Nakamura K, Omuri S, Omuri Singo (1960) Measurement of the nerve fibers in the anterior commissure of the guinea pig and mouse Bull Kobe Med Coll 19: 660–664

    Google Scholar 

  15. Fox C J, Schmitz JT (1943) A Marchi study of the distribution of the anterior commissure in the cat J comp Neurol 79: 297–314

    Google Scholar 

  16. van Alphen HAM (1969) The anterior commissure of the rabbit. Acta Anat 74 suppl 57: 111pp

    Google Scholar 

  17. Steele-Russell, I., J.F. Hobbelen, M.W. van Hof, and S.C. Pereira (1984) The effect of devascularization of the visual cortex on visual function in the rabbit Behav. Brain Res. 14:1, 69–80

    Google Scholar 

  18. Sunderland S (1940) The distribution of commissural fibres in the corpus callosum in the macaque monkey J neurol Psychiat 3: 9–18

    CAS  Google Scholar 

  19. Pandya DN, Hallet M, Mukerjee SK (1969) Intra and interhemispheric connections of the neocorticalauditory system in the rhesus monkey Brain Res 14: 49–65

    CAS  Google Scholar 

  20. Whitlock DG, Nauta WJH (1956) Subcortical projections from the temporal neocortex in macaca mulatta J comp Neurol 106: 183–212

    Google Scholar 

  21. Akert K, Gruesen RA, Woolsey CN, Meyer DR (1961) Klüver-Bucy syndrom in monkeys with neocortical ablations of the temporal lobe Brain 84: 480–498

    CAS  Google Scholar 

  22. Mitchell DE, Blakemore C (1970) Binocular depth perception and the corpus callosum Vision Res 10: 49–54

    CAS  Google Scholar 

  23. Steele-Russell I, van Hof MW, Pereira SC (1983) Angular acuity in normal and commissure-sectioned rabbits Behav Brain Res 8: 3, 167–176

    Google Scholar 

  24. Elberger AJ (1982a) The corpus callosum is a critical factor for developing maximum visual acuity Dev Brain Res 5: 350–353

    Google Scholar 

  25. Elberger AJ (1982b) The functional role of the corpus callosum in the developing visual system; A Review Prog Neurobiol 18: 15–79

    Google Scholar 

  26. Westheimer G, Mitchell DE (1969) The sensory stimulus for disjunctive eye movements. Vision Res 9: 749–755

    Article  PubMed  CAS  Google Scholar 

  27. van Hof MW Steele-Russell I (1977) Binocular vision in the rabbit. Physiol Behav 18: 121–128

    Google Scholar 

  28. Steele-Russell I, van Hof MW, van der Steen J, Collwijn, H. (1987) Visual and oculomotor function in chiasma-cut rabbits Exp Brain Res 66: 61–73

    CAS  Google Scholar 

  29. Russell MI, Castiglioni JA, Setlow B, Steele-Russell I (2010) Differential retinal localisation of pathways for pattern and movement vision Advances in Biomed Res 10: 76–81

    Google Scholar 

  30. Downer JL de C (1961) Changes in visual gnostic functions and emotional behavior following unilateral temporal pole damage in the split-brain monkey Nature (Lond) 191: 50–51

    CAS  Google Scholar 

  31. Downer JL de C (1962) Interhemispheric integration in the visual system. In: Mountcastle VB (Ed): Interhemispheric relations and cerebral dominance, pp 87–100. Baltimore: John Hopkins Press

    Google Scholar 

  32. Horel JA, Keating EG (1969) Partial Klüver-Bucy syndrome produced by cortical discontinuity. Brain Res 16: 281–284

    Article  PubMed  CAS  Google Scholar 

  33. Imamura A (1903) Ueber die kortikalen Störungen des Sehaktes und die bedeutung des Balkens Pflügers Arch 100: 495–531

    Google Scholar 

  34. Yoshimura K (1909) Über die Beziehungen des Balkens zum Sehakt Pfügers Arch ges Physiol 129: 425–460 3.

    Google Scholar 

  35. Crowne DP, Yeo CH, I Steele-Russell (1981) The effects of unilateral frontal eye fields in the monkey: visual-motor guidance and avoidance behaviour Behav Brain Res 2: 165–187

    CAS  Google Scholar 

  36. van de Steen H, I Steele-Russell, James GO (1986) Effects of unilateral frontal eye-field lesions on eye-head coordination in monkey J Neurophys 55 4: 696–714

    Google Scholar 

  37. Mountcastle VB (ed) (1962) Interhemispheric relations and cerebral dominance. Baltimore: John Hopkins University Press.

    Google Scholar 

  38. Steele-Russell I, van Hof MW, Berlucchi G (eds) (1979) Structure and function of the cerebral Commissures, Baltimore: University Park

    Google Scholar 

  39. Leporé F, Pitto M, Jasper HH (eds) (1986). Two hemispheres - one brain: functions of the corpus callosum. In: Neurology and neurobiology, vol 17, New York: Alan R Liss

    Google Scholar 

  40. Zaidel E, Jacobini M (eds) (2003). The parallel brain: the cognitive neuroscience of the corpus callosum. The MIT press, Cambridge, Massachusetts, London, England

    Google Scholar 

  41. Blinkov SM, Glezer II (1968) The human brain figures and tables 482 pp. Haigh (Transl) New York Plenum Press

    Google Scholar 

  42. Cumming WJK (1969) The fibre-content of the corpus callosum of the albino rat J Anat (Lond) 104: 189–201

    Google Scholar 

  43. Szentagothai-Schimert J (1942) Die Bedeutung des Faserkalibers und der Markesheidendicke im Zentralnervesystem Z Anat Entwickl Gesch 111: 201–223

    Article  Google Scholar 

  44. Ebner FF, Myers RE (1962) Commissural connections in the neocortex of monkey Anat Rec 142: 22

    Google Scholar 

  45. Myers RE (1965) The neocortical commissures and interhemispheric transmission of information. In Ettlinger EG (Ed) Functions of the corpus callosum. Ciba Foundation Study Group No 20, pp 133–143 Boston: Little Brown

    Google Scholar 

  46. Jones EG, Powell TPS (1968) The commissural connections of the somatic sensory cortex in cat J Anat (Lond) 103: 433–455

    CAS  Google Scholar 

  47. Karol EA, Pandya DN (1971) The distribution of the corpus callosum in the rhesus monkey Brain 94: 471–486

    CAS  Google Scholar 

  48. Pandya DN, Gold D, Berger T (1967a) Interhemispheric connections of the precentral motor cortex in the rhesus monkey Brain Res 15: 594–596

    Google Scholar 

  49. Van Essen DC, Newsome WT, Bixby JL (1982) The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaqe monkey J Neurosci 2; 265–283

    Google Scholar 

  50. Innocenti GM (1986) What is so special about callosal connections? In: Leporé F, Ptito M, Jasper HH (Edits) Two hemisphere-one brain: functions of the corpus callosum Alan R Liss Inc, New York

    Google Scholar 

  51. Killacky HP, Gould JH III, Cusik CG, Pons TP, Kaas JH (1983) The relationof corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of new and old world monkeys J comp Neurol 219: 384–419

    Google Scholar 

  52. Pandya DN, Vignolo LA (1969) Interhemis­pheric projections of the parietal lobe in the rhesus monkey Brain Res 15: 49–65

    Google Scholar 

  53. Hendreen JC, Yin TCT (1981) Homotopic and heterotopic callosal afferents of caudal inferior parietal lobule in in macaca mulatta J comp Neurol 197: 605–62

    Google Scholar 

  54. Pandya DN, Kuypers HGJM (1969) Cortico-cortical connections in the rhesus monkey Brain Res 13: 13–36

    CAS  Google Scholar 

  55. Seltzer B, Pandya DN (1976) Some cortical projections to the parahippocampal area in the rhesus monkey Exp Neurol 50: 146–160

    CAS  Google Scholar 

  56. Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey

    Google Scholar 

  57. Seltzer B, Pandya DN (1978) The distribution of posterior parietal fibers in the corpus callosum of the rhesus monkey Exp Brain Res 55: 147–150

    Google Scholar 

  58. Nasrallah HA, McChesney CM (1981). Psychopathology of the corpus callosum tumours Biol Psychiat 16: 663–669.

    CAS  Google Scholar 

  59. Geschwind N (1967) Brain mechanisms ­suggested by the study of interhemispheric connections In Millikan CH, Darley FI (Eds) Brain mechanisms underlying speech and language New York: Grune & Stratton pp 103–108

    Google Scholar 

  60. Musiek FE, Reeves A (2008) Effects of partial and complete corpus callosotomy on central auditory function In: Leporé F, Ptito M, Jasper HH (Edits) Two hemisphere-one brain: functions of the corpus callosum Alan R Liss Inc, New York

    Google Scholar 

  61. Doty RW & Negrão N (1973) Forebrain commissures and vision. In: Jung R (ed) Central processing of visual information, Part B. Handbook of sensory physiology, Vol VII/3B. Springer-Verlag Berlin Heidelberg New York

    Google Scholar 

  62. Steele-Russell I, Russell MI, Castiglioni JA, Werka T, Stetlow B (2008). The role of sensory pathways in Pavlovian conditioning in rabbit Exp Brain Res 185: 199–213

    CAS  Google Scholar 

  63. Russell MI, Castiglioni JA, Setlow B, Steele-Russell I (2010) Differential retinal localisation of pathways for pattern and movement vision Advances in Biomed Res 10: 76–81

    Google Scholar 

  64. Behr C (1925) Die Lehre von den Pupillenbewegungen Berlin.

    Google Scholar 

  65. Gamble JE, Patton HD (1953) Pulmonary edema and hemorrhage from preoptic lesions in rats Am J Physiol 172: 623–631

    CAS  Google Scholar 

  66. Maier FW, Patton HD (1956a) Neural substrate change involving in the genesis of “preoptic pulmonary edema’ Am J Physiol 184: 345–350

    Google Scholar 

  67. Maier FW, Patton HD (1956b) Role of the splanchnic nerve and the adrenal medulla in the genesis of ‘preoptic pulmonary edema’ Am J Physiol 184: 351–355

    Google Scholar 

  68. Anderson KV, O’Steen WK (1971) Photically evoked responses in rats exposed to continuous light. Exp Neurol 30:555–564

    Article  PubMed  CAS  Google Scholar 

  69. Bureš J, Burešova O, Fifkova E (1964) Interhemispheric transfer of a passive avoidance reaction J comp physiol Psychol 57: 326–330

    Google Scholar 

  70. Cydell A (1970) The use of hypothermia in split-brain surgery on the rat Behav Res meth Instrum 2: 65–66

    Google Scholar 

  71. Goodman ED, Steele-Russell I (1974) Split-brain rat: a new surgical approach. Physiol Behav 13: 327–330

    Article  PubMed  CAS  Google Scholar 

  72. Steele-Russell I, Safferstone JF (1973). Lateralisation of brightness and pattern discrimation learning in the callosum-sectioned rat Brain Res 49: 497–498

    Google Scholar 

  73. Crowne DP, Monica F. Novotny, Steele-Russell I (1991) Completing the split in the split-brain rat: transection of the optic chiasm Behav Brain Res 43: 185–19

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Steele-Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Steele-Russell, I. (2011). The Use of Commissurotomy in Studies of Interhemispheric Communication. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics