Skip to main content

Models of Rodent Cortical Traumatic Brain Injury

  • Protocol
  • First Online:
Book cover Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 62))

Abstract

The absence of a pharmacological therapy that is effective in the treatment of traumatic brain injury (TBI) highlights the need for further research into the secondary mechanisms that are initiated by the traumatic event, and which determine eventual neurological outcome. Various animal models of TBI exist, with each attempting to replicate different aspects of human brain injury. If an effective pharmacological therapy is to be developed and accepted by the neurotrauma community, it is critical that there is consistency across various laboratories in how these models are applied. The present review critically analyses the benefits and pitfalls of the common rodent models of TBI that are widely used today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J (2006) A systematic review of brain injury epidemiology in europe. Acta Neurochir (Wien) 148: 255–268

    CAS  Google Scholar 

  2. Finfer SR, Cohen J (2001) Severe traumatic brain injury. Resuscitation 48: 77–90

    PubMed  CAS  Google Scholar 

  3. Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE (1999) Traumatic brain injury in the united states: A public health perspective. J Head Trauma Rehabil 14: 602–615

    PubMed  CAS  Google Scholar 

  4. Jacobs G, Aeron-Thomas A, Astrop A (2000) Transport Research Laboratory Report 445: Estimating global road fatalities. TRL Limited, Crowthorne, UK

    Google Scholar 

  5. Hall ED, Gibson TR, Pavel KM (2005) Lack of a gender difference in post-traumatic neurodegeneration in the mouse controlled cortical impact injury model. J Neurotrauma 22: 669–679

    PubMed  Google Scholar 

  6. Graham DI, McIntosh TK, Maxwell WL, Nicoll JA (2000) Recent advances in neurotrauma. J Neuropathol Exp Neurol 59: 641–651

    PubMed  CAS  Google Scholar 

  7. Finnie JW, Blumbergs PC (2002) Traumatic brain injury. Vet Pathol 39: 679–689

    PubMed  CAS  Google Scholar 

  8. Smith DH, Meaney DF, Shull WH (2003) Diffuse axonal injury in head trauma. J Head Trauma Rehabil 18: 307–316

    PubMed  Google Scholar 

  9. Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115: 4–18

    PubMed  CAS  Google Scholar 

  10. Laurer HL, Meaney DF, Margulies SS, McIntosh TK (2002) Modeling brain injury/trauma. In: Ramachandran VS (ed) Encyclopedia of the human brain. Academic Press, San Diego

    Google Scholar 

  11. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR (1989) Diffuse axonal injury in head injury: Definition, diagnosis and grading. Histopathology 15: 49–59

    PubMed  CAS  Google Scholar 

  12. Blumbergs PC (1997) Pathology. In: Reilly P, Bullock R (eds) Head injury: Pathophysiology and management of severe closed injury. Chapman & Hall Medical, London, pp 39–70

    Google Scholar 

  13. Buki A, Povlishock JT (2006) All roads lead to disconnection?--traumatic axonal injury revisited. Acta Neurochir (Wien) 148: 181–193

    CAS  Google Scholar 

  14. Povlishock JT, Erb DE, Astruc J (1992) Axonal response to traumatic brain injury: Reactive axonal change, deafferentation, and neuroplasticity. J Neurotrauma 9 Suppl 1: S189-200

    PubMed  Google Scholar 

  15. Pappius HM, Wolfe LS (1983) Functional disturbances in brain following injury: Search for underlying mechanisms. Neurochem Res 8: 63–72

    PubMed  CAS  Google Scholar 

  16. DeKosky ST, Styren SD, O’Malley ME, Goss JR, Kochanek P, Marion D, Evans CH, Robbins PD (1996) Interleukin-1 receptor antagonist suppresses neurotrophin response in injured rat brain. Ann Neurol 39: 123–127

    PubMed  CAS  Google Scholar 

  17. Napieralski JA, Banks RJ, Chesselet MF (1998) Motor and somatosensory deficits following uni- and bilateral lesions of the cortex induced by aspiration or thermocoagulation in the adult rat. Exp Neurol 154: 80–88

    PubMed  CAS  Google Scholar 

  18. Hoane MR, Irish SL, Marks BB, Barth TM (1998) Preoperative regimens of magnesium facilitate recovery of function and prevent subcortical atrophy following lesions of the rat sensorimotor cortex. Brain Res Bull 45: 45–51

    PubMed  CAS  Google Scholar 

  19. Dutcher SA, Underwood BD, Michael DB, Diaz FG, Walker PD (1998) Heat-shock protein 72 expression in excitotoxic versus penetrating injuries of the rodent cerebral cortex. J Neurotrauma 15: 421–432

    PubMed  CAS  Google Scholar 

  20. Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, Longhi L, Laurer H, Maegele M, Neugebauer E, Graham DI, Stocchetti N, McIntosh TK (2005) Experimental models of traumatic brain injury: Do we really need to build a better mousetrap? Neuroscience 136: 971–989

    PubMed  CAS  Google Scholar 

  21. Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK (2004) Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 28: 365–378

    PubMed  Google Scholar 

  22. Lighthall JW (1988) Controlled cortical impact: A new experimental brain injury model. J Neurotrauma 5: 1–15

    PubMed  CAS  Google Scholar 

  23. Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39: 253–262

    PubMed  CAS  Google Scholar 

  24. Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, Dixon CE, McIntosh TK (1995) A model of parasagittal controlled cortical impact in the mouse: Cognitive and histopathologic effects. J Neurotrauma 12: 169–178

    PubMed  CAS  Google Scholar 

  25. Manley GT, Rosenthal G, Lam M, Morabito D, Yan D, Derugin N, Bollen A, Knudson MM, Panter SS (2006) Controlled cortical impact in swine: Pathophysiology and biomechanics. J Neurotrauma 23: 128–139

    PubMed  Google Scholar 

  26. Goodman JC, Cherian L, Bryan RM, Jr., Robertson CS (1994) Lateral cortical impact injury in rats: Pathologic effects of varying cortical compression and impact velocity. J Neurotrauma 11: 587–597

    PubMed  CAS  Google Scholar 

  27. Hall ED, Bryant YD, Cho W, Sullivan PG (2008) Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de olmos silver and fluorojade staining methods. J Neurotrauma 25: 235–247

    PubMed  Google Scholar 

  28. Deng Y, Thompson BM, Gao X, Hall ED (2007) Temporal relationship of peroxynitrite-induced oxidative damage, calpain-­mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury. Exp Neurol 205: 154–165

    PubMed  CAS  Google Scholar 

  29. Baskaya MK, Rao AM, Dogan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226: 33–36

    PubMed  CAS  Google Scholar 

  30. Cherian L, Goodman JC, Robertson CS (2000) Brain nitric oxide changes after controlled cortical impact injury in rats. J Neurophysiol 83: 2171–2178

    PubMed  CAS  Google Scholar 

  31. Shear DA, Tate MC, Archer DR, Hoffman SW, Hulce VD, Laplaca MC, Stein DG (2004) Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res 1026: 11–22

    PubMed  CAS  Google Scholar 

  32. Lindner MD, Plone MA, Cain CK, Frydel B, Francis JM, Emerich DF, Sutton RL (1998) Dissociable long-term cognitive deficits after frontal versus sensorimotor cortical contusions. J Neurotrauma 15: 199–216

    PubMed  CAS  Google Scholar 

  33. Brody DL, Mac Donald C, Kessens CC, Yuede C, Parsadanian M, Spinner M, Kim E, Schwetye KE, Holtzman DM, Bayly PV (2007) Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. J Neurotrauma 24: 657–673

    PubMed  Google Scholar 

  34. Onyszchuk G, Al-Hafez B, He YY, Bilgen M, Berman NE, Brooks WM (2007) A mouse model of sensorimotor controlled cortical impact: Characterization using longitudinal magnetic resonance imaging, behavioral assessments and histology. J Neurosci Methods 160: 187–196

    PubMed  Google Scholar 

  35. Saatman KE, Feeko KJ, Pape RL, Raghupathi R (2006) Differential behavioral and histopathological responses to graded cortical impact injury in mice. J Neurotrauma 23: 1241–1253

    PubMed  Google Scholar 

  36. Yu S, Kaneko Y, Bae E, Stahl CE, Wang Y, van Loveren H, Sanberg PR, Borlongan CV (2009) Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Res 1287: 157–163

    PubMed  CAS  Google Scholar 

  37. Fox GB, Fan L, LeVasseur RA, Faden AI (1998) Effect of traumatic brain injury on mouse spatial and nonspatial learning in the barnes circular maze. J Neurotrauma 15: 1037–1046

    PubMed  CAS  Google Scholar 

  38. Scheff SW, Baldwin SA, Brown RW, Kraemer PJ (1997) Morris water maze deficits in rats following traumatic brain injury: Lateral controlled cortical impact. J Neurotrauma 14: 615–627

    PubMed  CAS  Google Scholar 

  39. Mao H, Yang KH, King AI, Yang K (2010) Computational neurotrauma-design, simulation, and analysis of controlled cortical impact model. Biomech Model Mechanobiol 9: 763–762

    PubMed  Google Scholar 

  40. Saatman KE, Abai B, Grosvenor A, Vorwerk CK, Smith DH, Meaney DF (2003) Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. J Cereb Blood Flow Metab 23: 34–42

    PubMed  CAS  Google Scholar 

  41. Hall ED, Detloff MR, Johnson K, Kupina NC (2004) Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma 21: 9–20

    PubMed  Google Scholar 

  42. Hanell A, Clausen F, Bjork M, Jansson K, Philipson O, Nilsson LN, Hillered L, Weinreb PH, Lee D, McIntosh TK, Gimbel DA, Strittmatter SM, Marklund N (2010) Genetic deletion and pharmacological inhibition of nogo-66 receptor impairs cognitive outcome after traumatic brain injury in mice. J Neurotrauma 27: 1297–1309

    PubMed  Google Scholar 

  43. Fox GB, Fan L, Levasseur RA, Faden AI (1998) Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J Neurotrauma 15: 599–614

    PubMed  CAS  Google Scholar 

  44. Hayes RL, Stalhammar D, Povlishock JT, Allen AM, Galinat BJ, Becker DP, Stonnington HH (1987) A new model of concussive brain injury in the cat produced by extradural fluid volume loading: Ii. Physiological and neuropathological observations. Brain Inj 1: 93–112

    CAS  Google Scholar 

  45. Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67: 110–119

    PubMed  CAS  Google Scholar 

  46. McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden AL (1989) Traumatic brain injury in the rat: Characterization of a lateral fluid-percussion model. Neuroscience 28: 233–244

    PubMed  CAS  Google Scholar 

  47. Carbonell WS, Maris DO, McCall T, Grady MS (1998) Adaptation of the fluid percussion injury model to the mouse. J Neurotrauma 15: 217–229

    PubMed  CAS  Google Scholar 

  48. Graham DI, Raghupathi R, Saatman KE, Meaney D, McIntosh TK (2000) Tissue tears in the white matter after lateral fluid percussion brain injury in the rat: Relevance to human brain injury. Acta Neuropathol 99: 117–124

    PubMed  CAS  Google Scholar 

  49. Lifshitz J (2009) Fluid percussion injury model. In: Chen J, Xu ZC, Xu XM, Zhang JH (eds) Animal models of acute neurological injuries, Humana Press, New York, pp 369–384

    Google Scholar 

  50. Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK (2005) Lateral fluid percussion brain injury: A 15-year review and evaluation. J Neurotrauma 22: 42–75

    PubMed  Google Scholar 

  51. Witgen BM, Lifshitz J, Grady MS (2006) Inbred mouse strains as a tool to analyze hippocampal neuronal loss after brain injury: A stereological study. J Neurotrauma 23: 1320–1329

    PubMed  Google Scholar 

  52. Smith DH, Okiyama K, Thomas MJ, Claussen B, McIntosh TK (1991) Evaluation of memory dysfunction following experimental brain injury using the morris water maze. J Neurotrauma 8: 259–269

    PubMed  CAS  Google Scholar 

  53. Smith DH, Lowenstein DH, Gennarelli TA, McIntosh TK (1994) Persistent memory dysfunction is associated with bilateral hippocampal damage following experimental brain injury. Neurosci Lett 168: 151–154

    PubMed  CAS  Google Scholar 

  54. Grady MS, Charleston JS, Maris D, Witgen BM, Lifshitz J (2003) Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: Analysis by stereological estimation. J Neurotrauma 20: 929–941

    PubMed  Google Scholar 

  55. Vink R, Mullins PG, Temple MD, Bao W, Faden AI (2001) Small shifts in craniotomy position in the lateral fluid percussion injury model are associated with differential lesion development. J Neurotrauma 18: 839–847

    PubMed  CAS  Google Scholar 

  56. Tran LD, Lifshitz J, Witgen BM, Schwarzbach E, Cohen AS, Grady MS (2006) Response of the contralateral hippocampus to lateral fluid percussion brain injury. J Neurotrauma 23: 1330–1342

    PubMed  Google Scholar 

  57. Rodriguez-Paez AC, Brunschwig JP, Bramlett HM (2005) Light and electron microscopic assessment of progressive atrophy following moderate traumatic brain injury in the rat. Acta Neuropathol 109: 603–616

    PubMed  Google Scholar 

  58. Kita T, Tanaka T, Tanaka N, Kinoshita Y (2000) The role of tumor necrosis factor-alpha in diffuse axonal injury following fluid-percussive brain injury in rats. Int J Legal Med 113: 221–228

    PubMed  CAS  Google Scholar 

  59. Singleton RH, Zhu J, Stone JR, Povlishock JT (2002) Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J Neurosci 22: 791–802

    PubMed  CAS  Google Scholar 

  60. McIntosh TK, Noble L, Andrews B, Faden AI (1987) Traumatic brain injury in the rat: Characterization of a midline fluid-percussion model. Cent Nerv Syst Trauma 4: 119–134

    PubMed  CAS  Google Scholar 

  61. Kita T, Liu L, Tanaka N, Kinoshita Y (1997) The expression of tumor necrosis factor-alpha in the rat brain after fluid percussive injury. Int J Legal Med 110: 305–311

    PubMed  CAS  Google Scholar 

  62. Pierce JE, Smith DH, Trojanowski JQ, McIntosh TK (1998) Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 87: 359–369

    PubMed  CAS  Google Scholar 

  63. Schmidt RH, Scholten KJ, Maughan PH (1999) Time course for recovery of water maze performance and central cholinergic innervation after fluid percussion injury. J Neurotrauma 16: 1139–1147

    PubMed  CAS  Google Scholar 

  64. Lyeth BG, Gong QZ, Shields S, Muizelaar JP, Berman RF (2001) Group i metabotropic glutamate antagonist reduces acute neuronal degeneration and behavioral deficits after traumatic brain injury in rats. Exp Neurol 169: 191–199

    PubMed  CAS  Google Scholar 

  65. Hamm RJ (2001) Neurobehavioral assessment of outcome following traumatic brain injury in rats: An evaluation of selected measures. J Neurotrauma 18: 1207–1216

    PubMed  CAS  Google Scholar 

  66. Yamaki T, Murakami N, Iwamoto Y, Sakakibara T, Kobori N, Ueda S, Uwahodo Y, Kikuchi T (1998) Cognitive dysfunction and histological findings in rats with chronic-stage contusion and diffuse axonal injury. Brain Res Brain Res Protoc 3: 100–106

    PubMed  CAS  Google Scholar 

  67. Lyeth BG, Jenkins LW, Hamm RJ, Dixon CE, Phillips LL, Clifton GL, Young HF, Hayes RL (1990) Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Res 526: 249–258

    PubMed  CAS  Google Scholar 

  68. Hallam TM, Floyd CL, Folkerts MM, Lee LL, Gong QZ, Lyeth BG, Muizelaar JP, Berman RF (2004) Comparison of behavioral deficits and acute neuronal degeneration in rat lateral fluid percussion and weight-drop brain injury models. J Neurotrauma 21: 521–539

    PubMed  Google Scholar 

  69. Dhillon HS, Carman HM, Zhang D, Scheff SW, Prasad MR (1999) Severity of experimental brain injury on lactate and free fatty acid accumulation and evans blue extravasation in the rat cortex and hippocampus. J Neurotrauma 16: 455–469

    PubMed  CAS  Google Scholar 

  70. Sanders MJ, Dietrich WD, Green EJ (1999) Cognitive function following traumatic brain injury: Effects of injury severity and recovery period in a parasagittal fluid-percussive injury model. J Neurotrauma 16: 915–925

    PubMed  CAS  Google Scholar 

  71. Hellmich HL, Capra B, Eidson K, Garcia J, Kennedy D, Uchida T, Parsley M, Cowart J, DeWitt DS, Prough DS (2005) Dose-dependent neuronal injury after traumatic brain injury. Brain Res 1044: 144–154

    PubMed  CAS  Google Scholar 

  72. Jia F, Pan YH, Mao Q, Liang YM, Jiang JY (2010) Matrix metalloproteinase-9 expression and protein levels after fluid percussion injury in rats: The effect of injury severity and brain temperature. J Neurotrauma 27: 1059–1068

    PubMed  Google Scholar 

  73. Obenaus A, Robbins M, Blanco G, Galloway NR, Snissarenko E, Gillard E, Lee S, Curras-Collazo M (2007) Multi-modal magnetic resonance imaging alterations in two rat models of mild neurotrauma. J Neurotrauma 24: 1147–1160

    PubMed  Google Scholar 

  74. Giza CC, Prins ML, Hovda DA, Herschman HR, Feldman JD (2002) Genes preferentially induced by depolarization after concussive brain injury: Effects of age and injury severity. J Neurotrauma 19: 387–402

    PubMed  Google Scholar 

  75. Hoane MR, Tan AA, Pierce JL, Anderson GD, Smith DC (2006) Nicotinamide treatment reduces behavioral impairments and provides cortical protection after fluid percussion injury in the rat. J Neurotrauma 23: 1535–1548

    PubMed  Google Scholar 

  76. Li HH, Lee SM, Cai Y, Sutton RL, Hovda DA (2004) Differential gene expression in hippocampus following experimental brain trauma reveals distinct features of moderate and severe injuries. J Neurotrauma 21: 1141–1153

    PubMed  Google Scholar 

  77. Floyd CL, Golden KM, Black RT, Hamm RJ, Lyeth BG (2002) Craniectomy position affects morris water maze performance and hippocampal cell loss after parasagittal fluid percussion. J Neurotrauma 19: 303–316

    PubMed  Google Scholar 

  78. Cernak I, Vink R, Zapple DN, Cruz MI, Ahmed F, Chang T, Fricke ST, Faden AI (2004) The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis 17: 29–43

    PubMed  CAS  Google Scholar 

  79. Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part ii: Morphological characterization. J Neurosurg 80: 301–313

    CAS  Google Scholar 

  80. Heath DL, Vink R (1995) Impact acceleration-induced severe diffuse axonal injury in rats: Characterization of phosphate metabolism and neurologic outcome. J Neurotrauma 12: 1027–1034

    PubMed  CAS  Google Scholar 

  81. Yamamoto M, Marmarou CR, Stiefel MF, Beaumont A, Marmarou A (1999) Neuroprotective effect of hypothermia on neuronal injury in diffuse traumatic brain injury coupled with hypoxia and hypotension. J Neurotrauma 16: 487–500

    PubMed  CAS  Google Scholar 

  82. Rafols JA, Morgan R, Kallakuri S, Kreipke CW (2007) Extent of nerve cell injury in marmarou’s model compared to other brain trauma models. Neurol Res 29: 348–355

    PubMed  Google Scholar 

  83. Thornton E, Vink R, Blumbergs PC, Van Den Heuvel C (2006) Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res 1094: 38–46

    PubMed  CAS  Google Scholar 

  84. Donkin JJ, Nimmo AJ, Cernak I, Blumbergs PC, Vink R (2009) Substance p is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab 29: 1388–1398

    PubMed  CAS  Google Scholar 

  85. Harford-Wright E, Thornton E, Vink R (2010) Angiotensin-converting enzyme (ACE) inhibitors exacerbate histological damage and motor deficits after experimental traumatic brain injury. Neurosci Lett 481: 26–29

    PubMed  CAS  Google Scholar 

  86. Beaumont A, Marmarou A, Czigner A, Yamamoto M, Demetriadou K, Shirotani T, Marmarou C, Dunbar J (1999) The impact-acceleration model of head injury: Injury severity predicts motor and cognitive performance after trauma. Neurol Res 21: 742–754

    PubMed  CAS  Google Scholar 

  87. O’Connor CA, Cernak I, Vink R (2003) Interaction between anesthesia, gender, and functional outcome task following diffuse traumatic brain injury in rats. J Neurotrauma 20: 533–541

    PubMed  Google Scholar 

  88. Piper IR, Thomson D, Miller JD (1996) Monitoring weight drop velocity and foam stiffness as an aid to quality control of a rodent model of impact acceleration neurotrauma. J Neurosci Methods 69: 171–174

    PubMed  CAS  Google Scholar 

  89. Marmarou CR, Prieto R, Taya K, Young HF, Marmarou A (2009) Marmarou weight drop injury model. In: Chen J, Xu ZC, Xu XM, Zhang JH (eds) Animal models of acute neurological injuries, Humana Press, New York, pp 393–407

    Google Scholar 

  90. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part i: Pathophysiology and biomechanics. J Neurosurg 80: 291–300

    CAS  Google Scholar 

  91. Cook NL, Vink R, Donkin JJ, van den Heuvel C (2009) Validation of reference genes for normalization of real-time quantitative rt-pcr data in traumatic brain injury. J Neurosci Res 87: 34–41

    PubMed  CAS  Google Scholar 

  92. Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC (2010) Post-traumatic hypoxia exacerbates brain tissue damage: Analysis of axonal injury and glial responses. J Neurotrauma 27: 1997–2010

    PubMed  Google Scholar 

  93. Clark RS, Kochanek PM, Dixon CE, Chen M, Marion DW, Heineman S, DeKosky ST, Graham SH (1997) Early neuropathologic effects of mild or moderate hypoxemia after controlled cortical impact injury in rats. J Neurotrauma 14: 179–189

    PubMed  CAS  Google Scholar 

  94. Bramlett HM, Dietrich WD, Green EJ (1999) Secondary hypoxia following moderate fluid percussion brain injury in rats exacerbates sensorimotor and cognitive deficits. J Neurotrauma 16: 1035–1047

    PubMed  CAS  Google Scholar 

  95. Matsushita Y, Bramlett HM, Alonso O, Dietrich WD (2001) Posttraumatic hypothermia is neuroprotective in a model of traumatic brain injury complicated by a ­secondary hypoxic insult. Crit Care Med 29: 2060–2066

    PubMed  CAS  Google Scholar 

  96. Kallakuri S, Cavanaugh JM, Ozaktay AC, Takebayashi T (2003) The effect of varying impact energy on diffuse axonal injury in the rat brain: A preliminary study. Exp Brain Res 148: 419–424

    PubMed  Google Scholar 

  97. Berman RF, Verweij BH, Muizelaar JP (2000) Neurobehavioral protection by the neuronal calcium channel blocker ziconotide in a model of traumatic diffuse brain injury in rats. J Neurosurg 93: 821–828

    PubMed  CAS  Google Scholar 

  98. Maughan PH, Scholten KJ, Schmidt RH (2000) Recovery of water maze performance in aged versus young rats after brain injury with the impact acceleration model. J Neurotrauma 17: 1141–1153

    PubMed  CAS  Google Scholar 

  99. Schmidt RH, Scholten KJ, Maughan PH (2000) Cognitive impairment and synaptosomal choline uptake in rats following impact acceleration injury. J Neurotrauma 17: 1129–1139

    PubMed  CAS  Google Scholar 

  100. Statler KD, Kochanek PM, Dixon CE, Alexander HL, Warner DS, Clark RS, Wisniewski SR, Graham SH, Jenkins LW, Marion DW, Safar PJ (2000) Isoflurane improves long-term neurologic outcome versus fentanyl after traumatic brain injury in rats. J Neurotrauma 17: 1179–1189

    PubMed  CAS  Google Scholar 

  101. Statler KD, Alexander H, Vagni V, Holubkov R, Dixon CE, Clark RS, Jenkins L, Kochanek PM (2006) Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res 1076: 216–224

    PubMed  CAS  Google Scholar 

  102. Tan AA, Quigley A, Smith DC, Hoane MR (2009) Strain differences in response to traumatic brain injury in long-evans compared to sprague-dawley rats. J Neurotrauma 26: 539–548

    PubMed  Google Scholar 

  103. Reid WM, Rolfe A, Register D, Levasseur JE, Churn SB, Sun D (2010) Strain-related differences after experimental traumatic brain injury in rats. J Neurotrauma 27: 1243–1253

    PubMed  Google Scholar 

  104. Fox GB, LeVasseur RA, Faden AI (1999) Behavioral responses of c57bl/6, fvb/n, and 129/svems mouse strains to traumatic brain injury: Implications for gene targeting approaches to neurotrauma. J Neurotrauma 16: 377–389

    PubMed  CAS  Google Scholar 

  105. Royle SJ, Collins FC, Rupniak HT, Barnes JC, Anderson R (1999) Behavioural analysis and susceptibility to cns injury of four inbred strains of mice. Brain Res 816: 337–349

    PubMed  CAS  Google Scholar 

  106. Sunyer B, Patil S, Frischer C, Hoeger H, Lubec G (2008) Strain-dependent effects of cognitive enhancers in the mouse. Amino Acids 34: 485–495

    PubMed  CAS  Google Scholar 

  107. Roof RL, Hall ED (2000) Gender differences in acute cns trauma and stroke: Neuroprotective effects of estrogen and progesterone. J Neurotrauma 17: 367–388

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported, in part, by the Neurosurgical Research Foundation, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Vink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Corrigan, F., Ziebell, J.M., Vink, R. (2011). Models of Rodent Cortical Traumatic Brain Injury. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics