Skip to main content

MRI of Neurological Damage in Rats and Mice

  • Protocol
  • First Online:
Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 61))

  • 1570 Accesses

Abstract

The present chapter introduces the potential of magnetic resonance imaging (MRI) for in vivo investigations of experimental stroke in rodents. Aspects in setting up the experiment, particular for this technique, are presented as well as considerations for the choice of anaesthesia protocol. Structural changes induced by the evolution of the pathophysiological processes are demonstrated. Furthermore, a broad range of MRI options for the investigations of functional deficits and outcome improvement are pointed out. Emphasis is set on the multimodal approach capability of MRI to obtain complementary structural, haemodynamic, metabolic and, finally also, functional information in longitudinal studies of the complex pathophysiological evolution of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber R, Ramos-Cabrer P, Hoehn M. Present status of MRI and MRS in animal stroke models. Journal of Cerebral Blood Flow & Metabolism 2006;26:591–604.

    Google Scholar 

  2. Ueki M, Linn F, Hossmann KA. Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J Cereb Blood Flow Metab 1988;8(4):486–494.

    Google Scholar 

  3. Hedenquist P, Hellebrekers LJ. Laboratory animal analgesia, anesthesia and euthanasia. In: Hau J, Van Hoosier GLJ, editors. Handbook of laboratory animal science. Volume Vol.1: essential principles and practices. Florida: CRC Press; 2003. pp. 413–455.

    Google Scholar 

  4. Silverman J, Muir WW, 3rd. A review of laboratory animal anesthesia with chloral hydrate and chloralose. Lab Anim Sci 1993;43(3):210–216.

    Google Scholar 

  5. Ramos-Cabrer P, Weber R, Wiedermann D, Hoehn M. Continuous noninvasive monitoring of transcutaneous blood gases for a stable and persistent BOLD contrast in fMRI studies in the rat. NMR in Biomedicine 2005;18(7):440–446.

    Google Scholar 

  6. Weber R, Ramos-Cabrer P, Wiedermann D, van Camp N, Hoehn M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 2006;29(4):1303–1310.

    Google Scholar 

  7. Brinker G, Bock C, Busch E, Krep H, Hossmann K-A, Hoehn-Berlage M. Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magnetic Resonance in Medicine 1999;41(3):469–473.

    Google Scholar 

  8. Busch E, Hoehn-Berlage M, Eis M, Gyngell ML, Hossmann K-A. Simultaneous recording of EEG, DC potential and diffusion-weighted NMR imaging during potassium induced cortical spreading depression in rats. NMR in Biomedicine 1995;8(2):59–64.

    Google Scholar 

  9. Eis M, Hoehn-Berlage M. A time-efficient method for combined T1 and T2 measurement in magnetic resonance imaging: evaluation for multiparameter tissue characterization. MAGMA 1994;2:79–89.

    Google Scholar 

  10. Eis M, Hoehn-Berlage M. Quantitative diffusion MR imaging: Optimization of measurement parameters for improved accuracy and reproducibility. Plesser T, Wittenburg T, editors; 1995. p. 39–61.

    Google Scholar 

  11. Dirnagl U, Iadecola C, Moskowitz MA. Pathphysiology of ischaemic stroke: an integrated view. Trends in Neuroscience 1999;22:391–397.

    Google Scholar 

  12. Hoehn-Berlage M. Diffusion-weighted NMR imaging: application to experimental focal cerebral ischemia. NMR in Biomedicine 1995;8(7–8):345–358.

    Google Scholar 

  13. Back T, Hoehn-Berlage M, Kohno K, Hossmann KA. Diffusion nuclear magnetic resonance imaging in experimental stroke. Correlation with cerebral metabolites. Stroke 1994;25(2):494–500.

    Google Scholar 

  14. Hoehn-Berlage M, Norris DG, Kohno K, Mies G, Leibfritz D, Hossmann K-A. Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: The relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. Journal of Cerebral Blood Flow & Metabolism 1995;15:1002–1011.

    Google Scholar 

  15. Knight RA, Dereski MO, Helpern JA, Ordidge RJ, Chopp M. Magnetic resonance imaging assessment of evolving focal cerebral ischemia. Comparison with histopathology in rats. Stroke 1994;25:1252–1261.

    Google Scholar 

  16. Olah L, Wecker S, Hoehn M. Secondary deterioration of apparent diffusion coefficient after 1-hour transient focal cerebral ischemia in rats. Journal of Cerebral Blood Flow & Metabolism 2000;20(10):1474–1482.

    Google Scholar 

  17. Olah L, Wecker S, Hoehn M. Relation of apparent diffusion coefficient changes and metabolic disturbances after 1 hour of focal cerebral ischemia and at different reperfusion phases in rats. Journal of Cerebral Blood Flow & Metabolism 2001;21(4):430–439.

    Google Scholar 

  18. Hoehn-Berlage M, Eis M, Back T, Kohno K, Yamashita K. Changes of relaxation times (T1, T2) and apparent diffusion coefficient after permanent middle cerebral artery occlusion in the rat: temporal evolution, regional extent, and comparison with histology. Magnetic Resonance in Medicine 1995;34(6):824–834.

    Google Scholar 

  19. Hilger T, Niessen F, Diedenhofen M, Hossmann KA, Hoehn M. Magnetic resonance angiography of thromboembolic stroke in rats: indicator of recanalization probability and tissue survival after recombinant tissue plasminogen activator treatment. Journal of Cerebral Blood Flow & Metabolism 2002;22(6):652–662.

    Google Scholar 

  20. Busch E, Krueger K, Fritze K, Allegrini PR, Hoehn-Berlage M, Hossmann K-A. Blood-brain barrier disturbances after rt-PA treatment of thromboembolic stroke in the rat. Acta Neurochirurgica Supplementum 1997;70:206–208.

    Google Scholar 

  21. Wegener S, Weber R, Ramos-Cabrer P, Uhlenkueken U, Sprenger C, Wiedermann D, Villringer A, Hoehn M. Temporal profile of T2-weighted MRI distinguishes between pannecrosis and selective neuronal death after transient focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow & Metabolism 2006;26(1):38–47.

    Google Scholar 

  22. Wegener S, Weber R, Ramos-Cabrer P, Uhlenkueken U, Wiedermann D, Kandal K, Villringer A, Hoehn M. Subcortical lesions after transient thread occlusion in the rat: T2-weighted magnetic resonance imaging findings without corresponding sensorimotor deficits. Journal of Magnetic Resonance Imaging 2005;21(4):340–346.

    Google Scholar 

  23. Weber R, Wegener S, Ramos-Cabrer P, Uhlenküken U, Hoehn M. Detection of chronic macrophage activity in response to degrading blood vessels in experimental cerebral ischemia in rats: a high resolution MRI study. Symposium “Neuro-Visionen 2 - Perspektiven in NRW”, Ferdinand Schöningh GmbH & Co, Paderborn 2005:230–232.

    Google Scholar 

  24. Justicia C, Ramos-Cabrer P, Hoehn M. MRI detection of secondary damage after stroke - Chronic iron accumulation in the thalamus of the rat brain. Stroke 2008;39(5):1541–1547.

    Google Scholar 

  25. Pautler RG, Koretsky AP. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 2002;16(2):441–448.

    Google Scholar 

  26. Pautler RG, Silva AC, Koretsky AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging Magnetic Resonance in Medicine 1998;40(5):740–748.

    Google Scholar 

  27. van der Zijden JP, Wu O, van der Toorn A, Roeling TP, Bleys RL, Dijkhuizen RM. Changes in neuronal connectivity after stroke in rats as studied by serial manganese-enhanced MRI. Neuroimage 2007;34(4):1650–1657.

    Google Scholar 

  28. Soria G, Wiedermann D, Justicia C, Ramos-Cabrer P, Hoehn M. Reproducible imaging of rat corticothalamic pathway by longitudinal manganese-enhanced MRI (L-MEMRI). Neuroimage 2008;41:668–674.

    Google Scholar 

  29. Boska MD, Hasan KM, Kibuule D, Banerjee R, McIntyre E, Nelson JA, Hahn T, Gendelman HE, Mosley RL. Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiology of Disease 2007;26:590–596.

    Google Scholar 

  30. Song S-K, Yoshino J, Le TQ, Lin S-J, Sun S-W, Cross AH, Armstrong RC. Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 2005;26:132–140.

    Google Scholar 

  31. Sun S-W, Liang H-F, Le TQ, Armstrong RC, Cross AH, Song S-K. Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. NeuroImage 2006;32:1195–1204.

    Google Scholar 

  32. Granziera C, D’Arceuil HD, Zai L, Magistretti PJ, Sorensen AG, de Crespigny AJ. Long-term monitoring of post-stroke plasticity after transient cerebral ischemia in mice using in vivo and ex vivo diffusion tensor MRI. The Open Neuroimaging Journal 2007;1:10–17.

    Google Scholar 

  33. Thuen M, Olsen O, Berry M, Pedersen TB, Kristoffersen A, Haraldseth O, Sandvig A, Brekken C. Combination of Mn2+−enhanced and diffusion tensor MR imaging gives complementary information about injury and regeneration in the adult rat optic nerve. Jounral of Magnetic Resonance Imaging 2009;29:39–51.

    Google Scholar 

  34. Obenaus A, Jacobs RE. Magnetic resoannce imaging of functional anatomy: use for small animal epilepsy models. Epilepsia 2007;48 Supp4:11–17.

    Google Scholar 

  35. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine 1995;34:537–541.

    Google Scholar 

  36. Zhao FQ, Zhao TJ, Zhou L, Wu QL, Hu XP. BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. Neuroimage 2008;39:249–260.

    Google Scholar 

  37. Kalthoff D, Seehafer JU, Po C, Wiedermann D, Hoehn M. Functional connectivity in the rat at 11.7T: impact of physiological noise in resting state fMRI. Neuroimage 2011;54:2828–2839.

    Google Scholar 

  38. Kim YR, Biswal BB, Rosen BR. Causality Analysis using Resting State BOLD fMRI in Normal and Ischemic Rat Brains. 2007; Berlin.

    Google Scholar 

  39. van der Marel K, van Meer M, Wang K, Otte W, Berkelbach van der Sprenkel J, Dijkhuizen R. Analysis of changes in functional connectivity patterns with serial resting state fMRI after transient ischemic stroke in rat brain. 2009 April; Honolulu. p 697.

    Google Scholar 

  40. van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA, Viergever MA, Berkelbach van der Sprenkel JW, Dijkhuizen RM. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci 2010;30(11):3964–3972.

    Google Scholar 

  41. Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, Rosen BR, Finklestein SP. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci USA 2001;98(22):12766–12771.

    Google Scholar 

  42. Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, Rosen BR, Lo EH. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 2003;23(2):510–517.

    Google Scholar 

  43. Weber R, Ramos-Cabrer P, Justicia C, Wiedermann D, Strecker C, Sprenger C, Hoehn M. Early prediction of functional recovery after experimental stroke: Functional magnetic resonance imaging, electrophysiology, and behavioral testing in rats. Journal of Neuroscience 2008;28(5):1022–1029.

    Google Scholar 

  44. Ramos-Cabrer P, Justicia C, Wiedermann D, Hoehn M. Stem cell mediation of functional recovery after stroke in the rat. PLoS One 2010;5:e12779.

    Google Scholar 

  45. Adamczak J, Farr TD, Seehafer JU, Kalthoff D, Hoehn M. High field BOLD response to forepaw stimulation in the mouse. Neuroimage 2010;51:704–712.

    Google Scholar 

Download references

Acknowledgement

Support by the Nederlands Organisatie voor Wetenschappelijk Onderzoek and Alexander-von-Humboldt Stiftung (NWO-AvH) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Hoehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hoehn, M. (2011). MRI of Neurological Damage in Rats and Mice. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 61. Humana Press. https://doi.org/10.1007/978-1-61779-298-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-298-4_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-297-7

  • Online ISBN: 978-1-61779-298-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics